

Transforming the world of energy using open standards

Applying IEC 61850 to Distributed Energy Resources (DER)

UCAlug at CIGRÉ 2018 Stand 335

Ralph Mackiewicz SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314-1408 USA Tel: +1-586-254-0020 x103 Fax: +1-586-254-0053 Email: info@sisconet.com http://www.sisconet.com

Utility Industry is in Transition

© Copyright 2018 SISCO. All Rights Reserved

2

Expanding Number of Data Sources and Data Quality Affects the Scope of Utility Applications

The growth of data requires a new approach for OT applications:

Model based integration using CIM and IEC 61850

3

Drivers for the DER Project

- A large number of small distributed energy resource (DER) projects are being developed and must be connected to the distribution grid:
 - Utility developed and owned solar and wind
 - Outside investor owned solar and wind
- The utility is required to connect and control both utility and third party DER in a neutral manner using existing systems
- The utility is resource constrained to undertake the engineering to interconnect so many different projects

Complexity

- A common complaint is that IEC 61850 is big, complex and requires a long learning curve. Other protocols are simpler. Simple is better (KISS principle).
- The complexity of a system is not based on how the bytes are sent on the wire are organized
- Product implementation complexity does not result in application complexity
- Even though user configuration using numbered tags is understandable (simple) overall system complexity is increased

Renewable Integration - Solar

• Sun Spec Alliance has developed a Modbus based communication protocol for grid connected inverters

- At a 2010 industry event a Sun Spec representative told me:
 - IEC 61850 was too complex for grid connected inverters
 - Modbus was simple and easy to implement
- Let's look at how "simple" grid connected inverters are using Modbus

Sun Spec Protocol Implementation Conformance Statement

	Α	В	С	D	E	F	G	Н	1	J	К	L	М
1	// 4-Secure	4-Secure Dataset Read Response : Compute a digial signature over a specifed set of data registers ()											
2	Start Offset	End Offset	Size	R/W	Name	Label	Туре	Units	SF	Description	Notes	M/O	PICS (Y, N)
3	1	1	1	R	ID		unit16			A well-known value 4. Uniquely identifies this as a SunSpec Secure Dataset Read Response Model		м	
4	2	2	1	R	L		uint16	Variable # of 16 bit registers to follow : 60+N*1			м		
5	// 4 Secure	4 Secure Dataset Read Response Fixed Block (60)											
6	3	3	1	R	RqSeq	Request Sequence	uint16			Sequence number from the request		М	
7	4	4	1	R	Sts	Status	uint16			Status of last read operation		М	
8	5	5	1	R	х	х	uint16			Number of values from the request	A max of 50 values are allocated	м	
9	6	6	1	R	Val1	Value1	uint16			Copy of value from register Off1.	Unused values shall return 0xFFFF	м	
10	7	7	1	R	Val2		uint16					М	
11	8	8	1	R	Val3		uint16					М	
12	9	9	1	R	Val4		uint16					М	
13	10	10	1	R	Val5		uint16					М	
14	11	11	1	R	Val6		uint16					М	
15	12	12	1	R	Val7		uint16					М	
16	13	13	1	R	Val8		uint16					м	
H.		C 001	A 002 / 9	SEC 003	SEC 004	SEC 005 SEC 0	06 / SEC 007 /	SEC 00	8 /	SEC 009 / NC 010 / NC 011 / NC (1 4		1111	

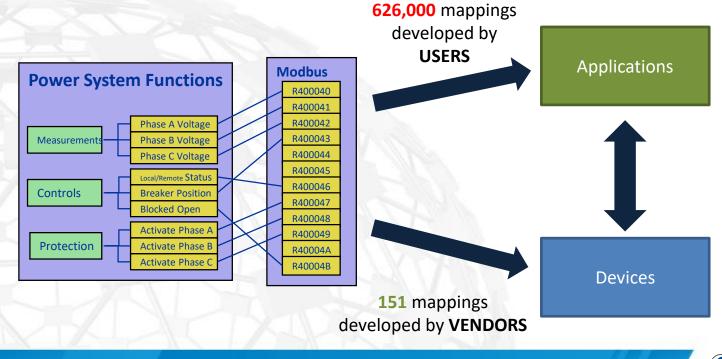
There are 75 tabs on this spreadsheet

© Copyright 2018 SISCO. All Rights Reserved

SISCO SYSTEMS INFEGRATION

Renewable Integration - Solar

- In California:
 - In 2014 there were 2,164 different models of inverters from 151 different manufacturers that were approved for grid connection of solar panels.
- Sun Spec Alliance:
 - 37 manufacturers with 127 models of Sun Spec certified Modbus interfaces.
- According to public sources:
 - There are > 626,000 solar homes in California
- Will it be "simple" to integrate 600K homes with utility scale applications and build an intelligent grid leveraging solar resources using Modbus?
- Good news: Standards like IEC 61850-7-420 are being improved to address these needs



Why Does This Happen?

- Assuming product implementation complexity results in application complexity
- Assuming that technology constraints today will be valid over the life of the system
- Assumption that user configuration is reasonable because it is understandable
- User effort costs less than development

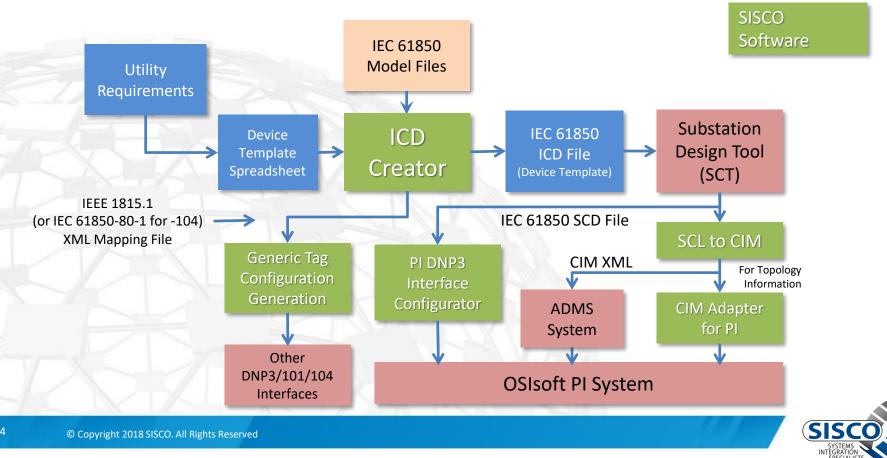
Where should the complexity be handled?

The Key Element of IEC 61850 to Address Complexity Semantics

- Semantics to implement an engineering process based on standardized configuration language (Substation Configuration Language – SCL)
- Semantics to eliminate manual mappings and automate configuration
- Semantics to manage the complexity of very large systems that are changing constantly
- How data is sent/received on the wire is not what makes a system complex

The Utility Dilemma

- The utility needs to implement complex systems
- Because of the number of project coming on line and complexity of the data they don't have the resources to do much manual configuration
- They don't have budget to replace their communications architecture or to purchase large-scale specialized systems for DER integration


The Solution: Use IEC 61850 and DNP3 Together

- All system design and naming standards will be done using IEC 68150 engineering tools and data models
- All communications will be through a DNP3 gateway
- Each project owner is required to provide a DNP3 gateway that conforms to a standardized template that conforms to IEC 61850-7-420 and the IEEE 1815 DER profile under development
 - SISCO is developing the tooling to support the project

13

Using IEC 61850 Semantics and Engineering with DNP3

Status of Standards

• IEEE 1547 – Grid connected smart inverter standard for the US

• IEC 61850-7-420 – Logical nodes for DER

DNP Application Note AN2013-001

IEEE 1547

- IEEE 1547-2013 specified how grid connected inverters operate assuming a low penetration rate of DER
 - Did not support numerous critical features like voltage, frequency ridethrough, VAR support, etc.
- Critical standard in the US to meet regulatory requirements
- 2013 version was insufficient for modern DER
- IEEE 1547-2018 addresses these with descriptions and requirements of all DER functions

IEC 61850-7-420

- IEC 61850-7-420 Ed.1 was insufficient for current DER
- Ed.2 under development to be compatible with IEEE 1547-2018 and other updated standards
- Ed.2 is currently only at CD2 stage but is being used for the project (less incompatibility than using Ed.1)
- Project implementation has identified some inconsistencies and have been incorporated into the next CD

DNP Application Note AN2013-001

Profile for Advanced Photovoltaic Generation and Storage

- Specifies mappings between DNP3 and IEC 161850-7-420
- Existing version uses Ed.1 of 7-420

	Name / Description				IEC 618				
Point Index			Name for State when value is 0	Name for State when value is 1	LN Class	LN Inst	Data Object	CDC Function	
17	Current output frequency is too high	1	Normal	Alarm	MMXU	1	Hz.range	MV	DS93
18	Current output frequency is too low	1	Normal	Alarm	MMXU	1	Hz.range	MV	DS93
19	Active power at the connection is high	1	Normal	Alarm	MMXU	2	TotW.range	MV	DS93
20	Active power at the connection is low	1	Normal	Alarm	MMXU	2	TotW.range	MV	DS93
21	Reactive power at the connection is high	1	Normal	Alarm	MMXU	2	TotVAr.range	MV	DS93
22	Reactive power at the connection is low	1	Normal	Alarm	MMXU	2	TotVAr.range	MV	DS93
23	Power factor at the connection is high	1	Normal	Alarm	MMXU	2	TotPF.range	MV	DS93
24	Power factor at the connection is low	1	Normal	Alarm	MMXU	2	TotPF.range	MV	DS93
25	DC Inverter input power too high	1	Normal	Alarm	MMDC	1	Watt.range	MV	DS93
26	DC Inverter input power too low	1	Normal	Alarm	MMDC	1	Watt.range	MV	DS93
27	DC Inverter current level too high	1	Normal	Alarm	MMDC	1	Amp.range	MV	DS93
28	DC Inverter current level too low	1	Normal	Alarm	MMDC	1	Amp.range	MV	DS93
29	DC voltage at inverter too low	1	Normal	Alarm	MMDC	1	Vol.range	MV	DS93

- Project is using in development new version of DNP3 mapping based on Ed.2 of 7-420 and IEEE 1547-2018
- Project usage has helped identify some inconsistencies in the new DNP3 profile

Project Summary

- IEC 61850 IED Capability Description (ICD) files are used to describe the inverter interfaces for the DER project
- IEC 61850 engineering process using a System Configuration Tool (SCT) is used to configure all the DNP3 communications and mappings for all DER operations
- Result is automated generation of all tag naming, DNP3 interface configuration and DER topology information
- Dramatic reduction in configuration complexity for the utility
- Can be applied to other technologies like IEC 60870-5-10X, etc.

Transforming the world of energy using open standards

Thank You

Ralph Mackiewicz SISCO, Inc. 6605 19½ Mile Road Sterling Heights, MI 48314-1408 USA Tel: +1-586-254-0020 x103 Fax: +1-586-254-0053 Email: info@sisconet.com http://www.sisconet.com