Multilin ${ }^{\text {TM }}$

 UR \& UR Plus
Proven, State-of-the-Art Protection \& Control Systems

KEY BENEFITS

- Modular construction: common hardware, reduced stock of spare parts, plug \& play modules for maintenance cost savings and simplification
- Proven flexibility and customization capabilities make UR/URPlus devices suitable to retrofit almost any kind of legacy P\&C scheme
- Large HMI and annunciator panels provide local monitoring \& control capabilities, and backup the substation HMI
- Phasor Measurement Unit (synchrophasor) according to IEEE ${ }^{\circledR}$ C37.118 (2011) and IEC ${ }^{\circledR}$ 61850-90-5 directly streamed from your protective device
- Three ethernet ports enable purpose specific LAN support that eliminates latency effect of heavy traffic protocols on mission critical communication services
- Embedded IEEE 1588 time synchronization protocol support eliminates dedicated IRIG-B wiring requirements for P\&C devices
- Advanced IEC61850 Ed. 2 implementation, complete settings via SCL files and IEC 61850-9-2 process bus solution enable resource and platform managing optimization and reduce cost of ownership
- Increase network availability by reducing failover time to zero through IEC 62439-3 "PRP" support
- CyberSentry ${ }^{\text {TM }}$ provides high-end cyber security aligned to industry standards and services (NERC ${ }^{\circledR}$ CIP, based, AAA, Radius, RBAC, Syslog)
- Enhanced CT/VT module diagnostics verify analog signal integrity using an advanced algorithm, ensuring reliability
- Reduces system event analysis effort with the support of embedded high-end and extended recording functionality

APPLICATIONS

- Protection, control, monitoring and supervision of power assets across generation, transmission, distribution, substation and industrial systems
- Utility substation and industrial plant automation
- Digital fault recording and Sequence of Event (SOE) recording
- Predictive maintenance through data analysis and trending
- Synchrophasor based monitoring and control systems with specialized PMU devices that support multiple feeders
- Complex protection \& control and wide area monitoring solutions with complete diagnostic and automation capabilities (UR Pus)

FEATURES

Protection and Control

- Fast and segregated line current differential and distance protection functionality in a single device
- Phase segregated line current differential with adaptive restraint and ground differential, stub bus protection
- Phase distance (five zones) with independent settings for compensation
- Single-pole tripping, breaker-and-half with independent current source support
- Complete generator protection with 100% stator ground fault detection with sub-harmonic injection and field ground protection

Communications

- Networking interfaces: 10 or 100MB copper or fiber optic Ethernet, RS485, RS232, RS422, G.703, C37.94, up to three independent ethernet ports
- Multiple protocols: IEC61850 Ed. 2, SFTP, DNP 3.0 and Modbus ${ }^{\circledR}$ serial/TCP, IEEE 1588, IEC 60870-5-104 and 103, PRP, SNTP, HTTP, TFTP, EGD
- Direct I/O: secure, high-speed exchange of data between URs for direct transfer trip and I/O extension applications

IEC 61850 Process Bus Interface

- Robust communications with up to 8 HardFiber Bricks
- Redundant architecture for dependability and security

Monitoring and Metering

- Synchrophasors in select products with IEEE C37.118 (2011) and IEC 61850-90-5 support
- Advanced recording capabilities deliver a 1024 event recorder, configurable and extended waveform capture and data logger
- Fault locator and user-programmable fault reports
- Breaker condition monitoring including breaker arcing current $(12 t)$, breaker re-strike and breaker flashover
- Metering: current, voltage, power, power factor, frequency, voltage \& current harmonics, energy, demand, phasors, etc.

EnerVista ${ }^{\text {TM }}$ Software

- Graphical Logic Designer and Logic Monitor to simplify configuration and testing procedures via EnerVista UR Engineer
- Service and update notification toolset ensures device documents and software are up-to-date via EnerVista Launchpad
- EnerVista Integrator providing easy integration of data in the UR Family into new or existing monitoring and control systems

UR \& UR ${ }^{\text {Plus }}$ Market Offerings

Generation

G60

Medium to Large Generators
The G60 provides comprehensive primary and backup protection for medium and large generators, including large steam and combustion turbines, combined-cycle generators and multicircuit hydro units. The G60 includes advanced automation and communication capabilities, extensive I/O options, and powerful fault recording features that simplify postmortem analysis and minimize generator downtime.

G30
 Combined Generator \& Transformer Protection

The G30 is a flexible system that can be used on small and medium generators, generator and step-up transformer arrangements or backup protection of large generators. Similar to the G60, the G30 also offers comprehensive protection and monitoring elements.

Transmission \& Distribution

D90 Plus

Sub-Cycle Distance Protection

The D90 ${ }^{\text {Pus }}$ is ideally suited for application on transmission lines where fast fault detection and small breaker failure margin are required. The $\mathrm{D} 90^{\text {Plus }}$ allows transmission limits to be maintained or even increased while respecting the transient stability limits of the power system.

D60
Fully Featured Distance Protection
The D60 is the ideal solution for providing reliable and secure primary and backup protection of transmission lines supporting: series compensation, teleprotection schemes, five mho or quad distance zones, single or three-pole tripping, breaker-andhalf with independent current inputs, phasor measurement units (PMUs), and more.

D30

Backup Distance Protection

The D30 is the cost-effective choice for the primary protection of sub-transmission systems or backup protection of transmission systems. Using FlexLogic™ elements, basic pilot schemes can be programmed. The D30 has complementary protection, control, communication, monitoring and metering functions that meet the toughest requirements of the market.

L90

Complete Line Protection

The L90 is a fast and powerful high-end phasesegregated line current differential and complete distance protection system, suitable for MV cables, two or three terminal transmission lines having breaker-and-half and single or three-pole tripping schemes.

L60

Line Phase Comparison Protection
The L60 is an extremely fast line phase comparison system, suitable for two or three terminal transmission lines. This system is able to operate using power line carrier or fiber optic communications.

L30

Sub-Transmission Line Current Differential Protection

The L30 is a cost-effective phase-segregated line current differential system intended to provide primary protection for MV cables and two/ three-terminal sub-transmission lines or backup protection to transmission lines.

B90

Low Impedance Busbar Protection
The B90 is an advanced low-impedance differential protection system that is intended to cover applications ranging from small to large substations, having either single or complex-split busbar schemes. It is able to support busbars with up to 24 breakers, and 6 single phase differential zones.

B30

Low Impedance Busbar Protection
The B30 is a cost-effective, advanced protection system that fits busbars with up to 6 circuits and two protection zones. The B30 provides advanced elements like CT trouble, directional and CT saturation, breaker failure and voltage supervision that make the B30 an extremely fast and secure busbar protection system.

B95 ${ }^{\text {Plus }}$

Distributed Busbar Protection System
The B95 ${ }^{\text {Plus }}$ is GE's distributed busbar solution that can be applied to any kind of busbar configuration and uses standard IEC 61850 protocol to connect to the bay units. The B95 ${ }^{\text {Plus }}$ delivers comprehensive and reliable protection for busbar applications with up to 24 feeders.

Transmission \& Distribution (Continued)

F60

Feeder Protection with Hi-Z Fault Detection

The F60 provides comprehensive feeder protection, control, advanced communications, monitoring and metering in an integrated, economical, and compact package and more.

F35

Multiple Feeder Protection
The F35 is a cost-effective device for primary feeder protection. F35's modular design allows customers to protect groups of feeders as follows: independent current and voltage inputs, independent current and common voltage inputs or independent current inputs only.

C70
 Capacitor Bank Protection

The C70 is an integrated protection, control, and monitoring device for shunt capacitor banks. The current and voltage-based protection functions are designed to provide sensitive protection for grounded, ungrounded single and parallel capacitor banks and banks with taps.

T60

Medium to Large Transformers

The T60 is a fully featured transformer protection system suitable for power transformers of any size that require current differential function. The T60 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, and performs automatic phase shift compensation for all types of transformer winding connections.

T35

Basic Transformer Protection, Multiple CTs

The T35 is a basic transformer protection system capable of protecting combined main power transformers and up to five feeders downstream. The T35 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, automatic phase shift compensation and allows users to enable removal of the zerosequence current even for delta connected transformer windings.

C90plus

Breaker Automation and Controller

The $\mathrm{C} 90^{\text {Plus }}$ is a powerful logic controller designed to be used in substation environments and for the unique automation requirements of industrial and utility power systems. The $\mathrm{C} 9 \mathrm{o}^{\text {Plus }}$ provides unmatched logic processing ability combined with a powerful math engine with deterministic execution of logic equations regardless of the configuration of the number of lines of logic.

C60
 Breaker Controller

The C60 is a substation hardened controller that provides a complete integrated package for the protection, control, and monitoring of circuit breakers, supporting dual-breaker busbar configurations, such as breaker-and-half or ring bus schemes.

C30

I/O Logic Controller
The C30 is designed to perform substation control logic that can also expand the I/O capability of protection devices and replace existing Sequence of Events (SOE) recorders.

Industrial \& Network

M60

Motor Protection

The M60 offers comprehensive protection and control solutions for large-sized three-phase motors The M60 provides superior protection, control, and diagnostics that includes thermal model with RTD and current unbalance biasing, stator differential, reverse and low forward power, external RRTD module, two-speed motors, reduced voltage starting, broken rotor bar detection, and more.

Abstract

N60 Network Stability and Synchrophasor Measurement

The N60 is intended to be used on load shedding, remedial action, special protection and wide area monitoring and control schemes. Like no one device before, the N60 shares real-time operational data to remote N 60 s so the system can generate intelligent decisions to maintain power system operation.

Overview

The Universal Relay (UR) is a family of leading edge protection and control products built on a common modular platform. All UR products feature high-performance protection, expandable I/O options, integrated monitoring and metering, high-speed communications, and extensive programming and configuration capabilities. The UR forms the basis of simplified power management for the protection of critical assets, either as a stand-alone device or within an overall power automation system.
The UR is managed and programmed through EnerVista Launchpad. This powerful software package, which is included with each relay, not only allows the setpoints of the relay to be programmed, but also provides the capability to manage setpoint files, automatically access the latest versions of firmware/ documentation and provide a window into the substation automation system.
The UR can be supplied in a variety of configurations and is available as a 19-inch rack horizontal mount unit or a reduced size $(3 / 4)$ vertical mount unit. The UR consists of the following modules: power supply, CPU, CT/VT input, digital input/output, transducer input/output, inter-relay communications, communication switch and IEC Process Bus. All hardware modules and software options can be specified at the time of ordering.

Protection and Control

The UR incorporates the most complete and unique protection algorithms to provide unparalleled security and system uptime. The UR selector guide (in the following pages) lists all the protection elements found in each relay.
To support the protection and control functions of the UR, various types and forms of I/O are available (specific capabilities are model dependent). Supported I/Os include:

CTs and VTs

Up to 24 analog current transformer (CT) and voltage transformer (VT) signals can be configured to monitor $A C$ power lines. Both 1 A and 5 A CTs are supported. Special function modules are available including: a CT module with sensitive ground input to provide ground fault protection on high-impedance grounded systems, and a high-impedance fault detection module that provides fast and reliable detection of faults caused by downed conductors.

UR - Protection, Metering, Monitoring and Control

The UR is the single point for protection, control, metering, and monitoring in one integrated device that can easily be connected directly into DCS or SCADA monitoring and control systems like Viewpoint Monitoring as shown.

Digital I/O

Up to 96 contact inputs (with utility voltage rating up to 250 V), and up to 64 contact outputs, are available and can be used to monitor and control a wide range of auxiliary equipment found within a substation or other protection application. Types of digital I/O cards include trip-rated Form-A, Form-C, Fast Form-C, latching and Solid State Relay (SSR), with or without DC voltage, current monitoring and isolated inputs (with auto burnish feature). Mechanically latching outputs can be used to develop secure interlocking applications and replace mechanical switches and lockout relays. Form-A digital outputs have activation speeds of less than 4 ms and both wet and dry contacts are supported.
Solid state output modules with high current breaking capability, fast tripping and reset time are ideal for direct tripping applications.

Transducer I/O

RTDs and DCmA cards are available to monitor system parameters, such as temperature, vibration, pressure, wind speed, and flow. Analog outputs can be used for hardwired connections from the controller to a SCADA system, to a programmable logic controller (PLC), or to other user interface devices (eg. panel display).

Advanced Automation

The UR incorporates advanced automation features including powerful FlexLogic programmable logic, communication, and

SCADA capabilities that far surpass what is found in the average protection relay. Each UR can be seamlessly integrated with other UR relays for complete system protection and control.

FlexLogic

FlexLogic is the powerful UR-platform programming logic engine that provides the ability to create customized protection and control schemes, minimizing the need and associated costs of, auxiliary components and wiring. Using FlexLogic, the UR can be programmed to provide the required tripping logic along with custom scheme logic for breaker control (including interlocking with external synchronizers), transfer tripping schemes for remote breakers and dynamic setting group changes.

Scalable Hardware

The UR is available with a multitude of I/O configurations to suit the most demanding application needs. The expandable modular design allows for easy configuration and future upgrades.

- Multiple CT/VT configurations allow for the implementation of many different schemes, including concurrent split-phase and differential protection
- Flexible, modular I/O covering a broad range of input signals and tripping schemes with trip rated Form-A, SSR, Form-C and mechanically latched relays

Summary

 SOEFaut Reports Transient
Disturbance
Digital fault recorder summary with the latest information on the events, faults, transients and disturbances (URPlus).

Control screen for the preconfigured bay with breaker \& disconnect control in multiple pages using dedicated pushbuttons in the front panel (URPlus).

- Inter-relay communications module that enables the sharing of digital status and analog values between UR relays for control, fast tripping or teleprotection applications
- Types of digital outputs include trip-rated Form-A and SSR mechanically latching, and Form-C outputs
- Form-A and SSR outputs available with optional circuit continuity monitoring and current detection to verify continuity and health of the associated circuitry
- IEC 61850 Process Bus delivering advanced protection and control capabilities while providing significant savings on the total life cost of electrical substations
- RTDs and DCmA inputs are available to monitor equipment parameters such as temperature and pressure

Monitoring and Metering

The UR includes high accuracy metering and recording for all AC signals. Voltage, current, and power metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle.

Fault and Disturbance Recording

The advanced disturbance and event recording features within the UR can significantly reduce the time needed for postmortem analysis of power system events and the creation of regulatory reports. Recording functions include:

- Sequence of Event (SOE)
- 1024 time stamped events (UR Relays) - 8192 time stamped events (UR ${ }^{\text {pus }}$
- Oscillography
- 64 digital \& up to 40 analog channels
- Events with up to 45 s length
- Data Logger and Disturbance Recording
- 16 channels up to 1 sample/cycle/ channel
- Fault Reports
- Powerful summary report of pre-fault and fault values
The very high sampling rate and large amounts of storage space available for data recording in the UR allows for the capture of complex events and can eliminate the need for installing costly stand-alone recording equipment.

Advanced Device Health Diagnostics

The UR performs comprehensive device health diagnostic tests at startup and continuously during run-time to test its own major functions and critical hardware. These diagnostic tests monitor for conditions that could impact security and availability of protection, and present device status via SCADA communications and front panel display. Providing continuous monitoring and early detection of possible issues help improve system uptime.

- Comprehensive device health diagnostic performed at startup
- Monitors the CT/VT input circuitry to validate the integrity of all signals
- Monitors internal DC voltage levels that allows for proactive maintenance and increased uptime

PMU - Synchrophasors

With the ability of having up to 6 PMU elements in one device, UR devices provide simultaneous data streams of up to four different clients.
UR devices exceed the IEEE C37.118 (2011) requirements for Total Vector Error (TVE) less than 1% over a range of 40 Hz to 70 Hz , and are able to measure and report synchrophasors over a frequency range from 30 Hz to 90 Hz with little effect on TVE.

A special feature of the synchrophasor implementation is the ability to apply magnitude and phase angle correction on a per-phase basis for known CT and PT magnitude and phase errors. Selected UR devices can apply a phase correction on each phase of up to $\pm 5^{\circ}$ in increments of 0.05°. They also provide the ability to adjust for delta-wye phase angle shifts or polarity reversal in the synchrophasor reporting of the voltage and current sequence components.
UR devices can stream PMU data through any of its three Ethernet ports using either IEEE C37.118 or IEC 61850-90-5 data formats. When streaming PMU data through a single port, a failover function can automatically switch the transmission over another Ethernet port.
Selected UR devices also support up to 16 user-definable command outputs via the command frame defined in the IEEE C37.118 standard.

PMU recording

UR devices include high accuracy metering and recording for all AC signals. Voltage, current, frequency, power and energy and
demand metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle. UR devices have 12 MB of synchrophasor recording memory with multiple recording and triggering options. The PMU recorder can be triggered by an over/under frequency, over/under voltage, overcurrent, overpower, rate of change of frequency condition, or by a user-specified condition, freely configured through FlexLogic. The PMU status flag shows which of those functions triggered the PMU recorder.

Monitor Multiple Power Circuits

Selected UR devices can monitor from one up to six three-phase power circuits and can be configured to simultaneously provide as many as 6 PMUs. Other configurations are: three power circuits with independent currents and voltages, four power circuits with independent currents and two common voltages, five power circuits with independent current and one common voltage. UR devices provide metering of many power system quantities including active, reactive and apparent power on a per-phase, and three-phase basis, true RMS value, phasors and symmetrical components of currents, and voltages, power factor, and frequency. Frequency can be measured independently and simultaneously from up to six different signals including currents if needed. UR devices allow for the creation and processing

IEC 61850 protocol enables high-speed trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.
of virtual sums of currents through its user configuration mechanism of "signal sources", and can also sum analog values through its FlexMath elements.

Communications

The UR provides advanced communications technologies for remote data and engineering access, making it easy and flexible to use and integrate into new and existing infrastructures. Direct support for fiber optic Ethernet provides high-bandwidth communications allowing for low-latency controls and high-speed file transfers of relay fault and event record information. The available redundant Ethernet option provides the means to create fault tolerant communication architectures in an easy, cost-effective manner without the need for intermediary communication hardware.

The UR Switch Module is a fully-managed Ethernet switch with a modular form factor. It can be placed directly into a GE Multilin UR to provide Ethernet connectivity to the relay as well as other Ethernet-enabled devices.

The UR supports the most popular industry standard protocols enabling easy, direct integration into DCS and SCADA systems.

- IEC 61850 Ed. 2 with 61850-9-2 and 61850-90-5 support
- DNP 3.0 (serial \& TCP/IP)
- Ethernet Global Data (EGD)
- IEC 60870-5-103 and IEC 60870-5-104
- Modbus RTU, Modbus TCP/IP
- HTTP, TFTP, SFTP and MMS file transfer
- SNTP and IEEE 1588 for time synchronization
- PRP as per IEC 62439-3

Purpose Specific LAN

The available three independent Ethernet ports enable users to segregate heavy traffic (eg. synchrophasors) from mission critical services (eg. GOOSE), as a way to eliminate potential latency effects.

Precision Time Protocol - IEEE 1588

UR devices support the IEEE 1588 v2 (2012) time synchronization protocol that enables time synchronization via the substation LAN with no sacrifice on time accuracy ($1 \mu \mathrm{~s}$). IEEE 1588 removes the dedicated IRIG-B wiring and repeaters used for time synchronization that are traditionally used in substations.

UR Switch Module

In addition to providing high-speed connectivity directly to the UR, the UR Switch Module provides an additional 4 fiber Ethernet ports, for connection to other relays in the system as well as upstream connectivity. It also provides 2 RJ45 copper Ethernet ports which can be used to connect local devices such as PCs, meters, or virtually anything else in the system.

The UR Switch Module provides a simple way to add fully-managed Ethernet networking
to your relays and devices without the need for additional hardware or a dedicated communications cabinet.
The UR Switch Module includes all the management and features that come with all MultiLink managed switches, and can be easily integrated into a network that has other Ethernet switches.
When used in a ring topology with other UR switch modules or Multilink switches, the UR Switch Module can be configured to use Multilink's Smart RSTP feature to provide industry-leading network recovery for ring topologies, at a speed of less than 5 ms per switch.

Interoperability with Embedded IEC 61850

The new IEC 61850 implementation in the UR Family positions GE as industry leader in this standard.

- Implements Edition 2 of the standard across the entire family of UR devices
- Provides full relay setting management via standard SCL files (ICD, CID and IID)
- Enable automated relay setting management using 3rd party tools through standard file transfer services (MMS and SFTP)

trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.
- Increases the number of Logical Devices and data mapped to them, GOOSE messages, and Reports to support different organizational needs for data transfer and reduce dependency on generic logical nodes.
- Adds test and simulation capabilities of Edition 2 to simplify testing and commissioning of IEC 61850 systems
- Configure GE Systems based on IEC 61850 using universal 3rd party tools
- Multicast IEEE C37.118 synchrophasor data between PMU and PDC devices using IEC 61850-90-5

LAN Redundancy

Substation LAN redundancy has been traditionally accomplished by reconfiguring the active network topology in case of failure. Regardless of the type of LAN architecture (tree, mesh, etc), reconfiguring the active LAN requires time to switchover, during which the LAN is unavailable. UR devices deliver redundancy as specified by PRP-IEC 624393 , which eliminates the dependency on LAN reconfiguration and the associated switchover time. The UR becomes a dual attached node that transmits data packets over both main and redundant networks simultaneously, so in case of failure, one of the data packets will reach the receiving device with no time delay.

Direct I/O Messaging

Direct I/O allows for the sharing of analog or high-speed digital information between multiple UR relays via direct back-to-back connections or multiplexed through a standard DSO multiplexer channel bank. Regardless of the connection method, direct I/O provides continuous real-time channel monitoring that supplies diagnostics information on channel health. Direct I/O provides superior relay-torelay communications that can be used in advanced interlocking, generation rejection and other special protection schemes.

- Communication with up to 16 UR relays in single or redundant rings rather than strictly limited to simplistic point-to-point configurations between two devices
- Connect to standard DSO channel banks through standard RS422, G. 703 or IEEE C37.94 interfaces or via direct fiber optic connections
- No external or handheld tester required to provide channel diagnostic information

Multi-Language

UR devices support multiple languages: English, French, Russian, Chinese, Turkish and German. These language options are available on the front panel, in the EnerVista setup software, and in the product manuals. Easily switch between English and an additional language on the local displays without uploading new firmware.

HardFiber IEC 61850

Process Bus

The HardFiber Process Bus System represents a true breakthrough in the installation and ownership of protection and control systems, by reducing the overall labor required for substation design, construction, and testing. This innovative solution addresses the three key issues driving the labor required for protection and control design, construction and testing:

- Every substation is unique, making design and drafting a one-off solution for every station
- Miles of copper wires need to be pulled, spliced and terminated
- Time-consuming testing and troubleshooting of thousands of connections must be performed by skilled personnel
The HardFiber Process Bus System was designed to address these challenges and reduce the overall labor associated with the tasks of designing, documenting, installing and testing protection and control systems. By specifically targeting copper wiring and all of the labor it requires, the HardFiber Process Bus System allows for greater utilization and optimization of resources with the ultimate goal of reducing the total life cost (TLC) for protection and control.

Cyber Security CyberSentry UR

CyberSentry enables UR devices to deliver full cyber security features that help customers to comply with NERC CIP and NIST® IR 7628 cyber security requirements through supporting the following core features:

Password Complexity

Supporting up to 20 alpha- numeric or special characters, UR passwords exceed NERC CIP requirements for password complexity. Individual passwords per role are available.

AAA Server Support (Radius)

Enables integration with centrally managed authentication and accounting of all user activities and uses modern industry best practices and standards that meet and exceed NERC CIP requirements for authentication and password management.

Role Based Access Control (RBAC)

Efficiently administrate users and roles within UR devices. The new and advanced access functions allow users to configure up to eight roles for up to eight configurable users with independent passwords. The standard "Remote Authentication Dial In User Service" (Radius) is used for authentication.

Event Recorder (Syslog for SEM)

Capture all cyber security related events within a SOE element llogin, logout, invalid password attempts, remote/local access, user in session, settings change, FW update, etc), and then serve and classify data by security level using standard Syslog data format. This enables UR devices to integrate with established SEM (Security Event Management) systems.

EnerVista Software

The EnerVista suite is an industry-leading set of software programs that simplifies every aspect of using the UR. The EnerVista suite provides all the tools to monitor the status of the protected asset, maintain the relay, and integrate information measured by the UR into DCS or SCADA monitoring systems. Convenient COMTRADE and SOE viewers are an integral part of the UR setup software
included with every UR relay, to carry out postmortem event analysis and ensure proper protection system operation.

EnerVista Launchpad

EnerVista Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE Multilin products. The setup software within Launchpad allows for the configuration of devices in real-time by communicating using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time. Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Application Notes and Support Documents
- Guideform Specifications
- Brochures
- Wiring Diagrams
- FAQ's
- Service Bulletins

Viewpoint Monitoring

Viewpoint Monitoring is a simple-to-use and full-featured monitoring and data recording software package for small systems. Similar to small SCADA systems, Viewpoint Monitoring provides a complete HMI package with the following functionality:

- Plug-\&-Play Device Monitoring
- System Single-Line Monitoring \& Control

Power System Troubleshooting

The UR contains many tools and reports that simplify and reduce the amount of time required for troubleshooting power system events, increase uptime and reduce loss of production.
 both analog and digital power system quantities.

- Annunciator Alarm Screens
- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

Viewpoint UR Engineer

Viewpoint UR Engineer is a set of powerful tools that allows the configuration and testing of GE relays at a system level in an easy-touse graphical drag-and-drop environment. Viewpoint UR Engineer provides the following configuration and commissioning utilities:

- Graphical Logic Designer (Substation)
- Graphical System Designer
- Graphical Logic Monitor
- Graphical System Monitor (Substation)
- IEC 61850 Configurator

Viewpoint Maintenance

Viewpoint Maintenance provides tools that will create reports on the operating status of the relay, simplify the steps to download fault and event data, and reduce the work required for cyber security compliance audits. Tools available in Viewpoint Maintenance include:

- Settings Security Audit Report
- Device Health Report
- Single-Click Fault Data Retreival

EnerVista Integrator

EnerVista Integrator is a toolkit that allows seamless integration of Multilin devices into new or existing automation systems. Included in EnerVista Integrator is:

- OPC/DDE Server
- GE Multilin Drivers
- Automatic Event Retrieval
- Automatic Waveform Retrieval

User Interface

The UR front panel provides extensive local HMI capabilities. The local display is used for monitoring, status messaging, fault diagnosis, and device configuration. User-configurable messages that combine text with live data can be displayed when user-defined conditions are met. Configurable LEDs allows status and alarm signaling (50 LEDs).
The URPlus has a colorful, graphical HMI that allows users to have local monitoring of status, values and control functionality.

The alarm annunciator panel provides the configuration of up to 256 signals (alarms and status) with full text description.

UR ${ }^{\text {Plus }}$ Front Panel with Large Color Display and Annunciator Panel

UR ${ }^{\text {Plus }}$ Dimensions

HORIZONTAL FRONT VIEW

HORIZONTAL TOP VIEW

UR Enhanced Front Panel with Large Display, Customizable LED Annunicator, and User-Programmable Pushbuttons

UR Horizontal Dimensions

UR Vertical Dimensions

UR Family Selector Guide

Features
Protection

1. Disturbance Detector
2. Mho Distance, Phase (No. of Zones)
3. Mho Distance, Ground or Neutral Phase (No. of Zones)
4. Quadrilateral Distance, Phase (No. of Zones)
5. Quadrilateral Distance, Ground or Neutral (No. of Zones)
6. Permissive Pilot Logic
7. Sub-Cycle Distance
8. Overexcitation Protection (V/Hz)
9. Synchronism Check or S
10. Undervoltage, Phase
11. Undervoltage, Auxiliary
12. Stator Ground (3rd Harmonic)
13. Sensitive Directional Power
14. Loss of Excitation - Based on Reactive Power
15. Loss of Excitation - Based on Impedance Element 16. Current Unbalance
16. Broken Conductor Detection
17. IOC, Negative Sequence
18. OC, Negative Sequence
19. Current Directional, Negative Sequenc
20. Reverse Phase Sequence Voltage
21. Thermal Model

23. Inadvertent/Accidental Energization

24. End of Fault Protection
25. Motor Mechanical Jam
26. Motor Start Supervision
27. Motor Acceleration Time
28. User Programmable Curves
29. Breaker Failur
30. IOC, Phase
31. IOC, Ground
32. IOC, Neutral
33. IOC, Sensitive Ground
34. High Impedance Fault Detection
35. TOC, Phase
36. TOC, Ground
37. TOC, Neutral
38. TOC, Sensitive Ground
39. TOC, Voltage Restrained
40. Overvoltage, Phase
41. Overvoltage, Auxiliary
42. Negative Sequence Overvoltage
43. 100\% Stator Ground Protection
44. Current Directional, Phase
45. Current Directional, Neutral
46. Current Directional, Negative Sequence
47. Power Swing Blocking
48. Out-of-Step Tripping
49. AC Reclosing (No. of Shots)
50. Switch on to Fault (Line Pickup)
51. Voltage Transformer Fuse Failure
52. Current Transformer Supervision
53. Load Encroachment Logic
54. Underfrequency
55. Overfrequency
56. Anti-Islanding Protection/Frequency Rate of Change 58. Lockout Functionality
57. Bus Differential
58. Line Current Differential
59. Ground Differential
60. Stator Differential
61. Transformer Differential
62. Line Phase Comparison
63. Voltage Differential
64. Capacitor Bank Overvoltage
65. Neutral Voltage Unbalance
66. Automatic Voltage Regulation
67. Time of Day Control
68. Instantaneous Differential
69. Split Phase Protection
70. Line Current Differential Trip Logic
71. CT Failure

ANS
B30
B90 B95 Plus
C30
C60
C70
C90 Plus
D30

						-	-	-
21P								5
216/N								3
21P								3
21G/N								3
24								
25					-		-	-
27P	-	-	-		-	-	-	-
27X					-		-	-
27TN								
32 S					-		-	
40Q								
40								
46								
46BC								
46/50						-	-	-
46/51						-	-	-
46/67							-	-
47							-	
49								
50/27								
		-	-					
	-				-	-	-	\bullet
50BF	-	-	-		-	-	-	Logic
50P	-	-	-		-	-	-	-
50G	-				-	-	-	-
50 N	-				-	-	-	-
50SG	-				-			-
51P	-	-	-		-	-	-	-
51G	-				-	-	-	-
51N	-				-	-	-	-
51SG	-				-			-
51V	-				-	-	-	-
59P						-	-	-
59A	-				-	-	-	-
59N	-				-	-	-	-
59-2						-	-	-
64 TN								
67P							-	-
67 N							-	-
46/67							-	-
68								-
78								-
79					4		-	4
SOTF								-
VTFF					-	-	-	-
50/74	-	-	-					
								-
81U							-	
810							-	
81R							-	
86	-	\bullet	-	-	-	-	-	-
87B	-	-	-					
87L								
87G								
875								
875								
87PC								
						-		
						-		
						\bullet		
						-		
						-		
50/87	-	-	-					

Protection													
1.	-	-		-			-	-	-		-		
2.	5	5				3		3	5				5
3.	5	5						3	3				3
4.	5	5						3	3				3
5.	5	5						3	3				3
6.	-	-							-				
7.		-											
8.					-	-							-
9.	-	-		-	-	-	-	-	-		-		-
10.	-	-	-	-	-	-	-	-	-	-	-		-
11.	-	-	-	-	-	-	-	-	-	-			-
12.					-	-							
13.		-		-	-	-				-	-		
14.					-	-							
15.					-	-							
16.					-	-				-			
17.				-									
18.	-	-		-			-	-	-				
19.	-	-		-			-	-	-				
20.	-	-		-	-	-		-	-				
21.		-								-			
22.						-				-			-
23.					-	-							
24.													
25.										-			
26.										-			
27.										-			
28.	\bullet	-	-	-	-	-	-	-	-	-	-	-	-
29.	-	-	Logic	-	Logic	-	-	-	-	-	Logic	Logic	Logic
30.	-	-	-	-	-	-	-	-	-	-	-		-
31.	-	-	-	-	-	-	-	-	-	-			-
32.	-	-	-	-	-	-	-	-	-	-			-
33.	-		-	-	-	-	-	-	-	-			-
34.				-									
35.	-	-	-	-	-	-	-	-	-	-		-	-
36.	-	-	-	-	-	-	-	-	-	-		-	-
37.	-	-	-	-	-	-	-	-	-	-			-
38.	-		-	-	-	-		-	-	-		-	-
39.	-	-	-	-	-	-		-	-	-		-	-
40.	-	-		-	-	-	-	-	-	-	-		-
41.	-	-	-	-	-	-	-	-	-	-			-
42.	-	-	-	-	-	,	-	-	-	-			-
43.	-	-		-	-	-				-			
44.						-							
45.	-	-		-	-	-		-	-	-			-
46.	-	-		\bullet	-	-		-	-	\cdot			-
47.	-	-		-	-	-		-	-				
48.	-	-				-		\bullet	-		-		-
49.	-	-				-		-	-		-		-
50.	4	-	4	4			4	4	4				
51.	-	-						-	-				
52.	-	-		-	-	-	-	-	\bullet	-	-		-
53.							-	-	-				
54.	-	-		-				-	-				-
55.		-	-	-	-	-	-				-		-
56.		-		-	-	-					-		-
57.	-			-	-	-			-		-		-
58.	-	-	-	-	-	-		-	-	-	-	-	-
59.													
60.							-		-				
61.				-	-	-			-				-
62.					-	-				-			
63.					-							-	-
64.								-					
65.													
66.													
67.													
68.													
69.													
70.												-	-
71.					-	-							
72.									-				
73.					-	-	-	-	-	-		-	-

PROTECTION
100\% STATOR GROUND

Pickup level:	0.000 to 0.250 pu in steps of 0.001
Dropout level:	97 to 98\% of pickup
Level accuracy:	$\pm 2 \%$ of reading from 1 to 120 V
Pickup delay:	0 to 600.00 s in steps of 0.01
3rd harmonic	0.0010 to 0.1000 pu in steps of
supervision level:	0.0001
Time accuracy:	$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is greater
Operate time:	< 30 ms at $1.10 \times$ Pickup at 60 Hz
ACCELERATION TIME	
Acceleration current:	1.00 to $10.00 \times$ FLA in steps of 0.0
Acceleration time:	0.00 to 180.00 s in steps of 0.01
Operating mode:	Definite Time, Adaptive
ACCIDENTAL ENERG	ATION
Operating condition:	Overcurrent
Arming condition:	Undervoltage and/or Machine Offline
Overcurrent:	
Pickup level:	0.000 to 3.000 pu in steps of 0.00
Dropout level:	97 to 98\% of pickup
Level accuracy:	$\pm 0.5 \%$ of reading from 0.1 to 2.0 \times CT rating
Undervoltage:	
Pickup level:	0.000 to 3.000 pu in steps of 0.001
Dropout level:	102 to 103\% of pickup
Level accuracy:	$\pm 0.5 \%$ of reading 10 to 208 V
Operate Time:	$<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz

Operate Time:
< 30 ms at $1.10 \times$ Pickup at 60 Hz
AUTORECLOSURE C60/D60/L90/L60
Two breakers applications
Single- and three-pole tripping schemes
Up to 4 reclose attempts before lockout
Selectable reclosing mode and breaker sequence
AUTORECLOSURE F60/F35/D30
Single breaker applications, 3-pole tripping schemes Up to 4 reclose attempts before lockout
Independent dead time setting before each shot
Possibility of changing protection settings after each shot
with FlexLogic.
AMP UNBALANCE
Avg and Full Load
amps:
I_1 and 1_2 amps
Pickup level:
Dropout level:
Level accuracy:
Pickup delay:
Reset delay:
Operate time:
AUXILIARY OVERVOLTAG
Pickup level:
Dropout level
Level accuracy:
Pickup delay:
Reset delay:
Timing accurac
Operate time:
AUXILIARY UNDERV < 30 ms at $1.10 \times$ pickup at 60 Hz
Pickup levilat
0.000 to 3.000 pu in steps of 0.001

Curve shapes:
Curve multiplier:
$\pm 0.5 \%$ of reading from 10 to 208 V
GE IAV Inverse, Definite Time
Time Dial $=0$ to 600.00 in steps
of 0.01
Timing accuracy: $\pm 3 \%$ of operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)
BREAKER ARCING CURREN
Principle: Accumulates breaker duty (12t) and
auxiliary relays:
Alarm threshold:
Fault duration
accuracy:
Availability:
0.25 of a power cycle

1 per CT bank with a minimum of 2

CTION	
REAKER FAILURE	
Mode	1-pole, 3
Current supervision:	phase, neutral
Current supv. pickup:	0.001 to 30.000 pu in steps of 0.001
Current supv. dropout:	97 to 98% of pickup
Current supv. accuracy:	
$\begin{aligned} & 0.1 \text { to } 2.0 \times \mathrm{CT} \\ & \text { rating: } \end{aligned}$	$\pm 0.75 \%$ of reading or $\pm 2 \%$ of rated (whichever is greater)
BREAKER FLASHOVER	
Operating quantity:	Phase current, voltage and voltage difference
Pickup level voltage:	0 to 1.500 pu in steps of 0.001
Dropout level voltage:	97 to 98% of pickup
Pickup level current:	0 to 1.500 pu in steps of 0.001
Dropout level current:	97 to 98% of pickup
Level accuracy:	$\pm 0.5 \%$ or $\pm 0.1 \%$ of rated, whichever is greater
Pickup delay:	0 to 65.535 s in steps of 0.001
Time accuracy:	$\pm 3 \%$ or $\pm 42 \mathrm{~ms}$, whichever is greater
Operate time:	$<42 \mathrm{~ms}$ at $1.10 \times$ pickup at 60
BUS DIFFERENTIAL (87B)	
Pickup level:	0.050 to 6.000 pu in steps of 0.001
Low slope:	15 to 100% in steps of 1
High slope:	50 to 100\% in steps of 1
Low breakpoint:	1.00 to 30.00 pu in steps of 0.01
High breakpoint:	1.00 to 30.00 pu in steps of 0.01
High set level:	0.10 to 99.99 pu in steps of 0.01
Dropout level: ${ }^{\text {Level accuracy: }}$ a to 98% of Pickup	
$\begin{aligned} & 0.1 \text { to } 2.0 \times \mathrm{CT} \\ & \text { rating: } \end{aligned}$	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater)
>2.0 \times CT rating	$\pm 1.5 \%$ of reading
Operating time:	one power system cycle (typical)
CT TROUBLE	
Responding to:	Differential curr
Pickup level:	0.020 to 2.000 pu in steps of 0.001
Pickup delay:	1.0 to 60.0 sec . in steps of 0.1
Time Accuracy:	$\pm 3 \%$ or $\pm 40 \mathrm{~ms}$, whichever is greater
Availability:	1 per zone of protection (B90)
GENERATOR UNBALANCE	
Gen. nominal current:	0.000 to 1.250 pu in steps of 0.001
Stages:	2 \|I2t with linear reset and definite time)
Pickup level:	0.00 to 100.00% in steps of 0.01
Dropout level:	97 to 98% of pickup
Level accuracy:	
0.1 to $2 \times$ CT rating:	$\pm 0.5 \%$ of reading or 1% of rated (whichever is greater)
> $2.0 \times$ CT rating:	$\pm 1.5 \%$ of reading
Time dial (K-value):	0.00 to 100.00 in steps of 0.01
Pickup delay:	0.0 to 1000.0 s in steps of 0.1
Reset delay:	0.0 to 1000.0 s in steps of 0.1
Time accuracy:	$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is greater
Operate time:	$<50 \mathrm{~ms}$ at 60 Hz
GROUND DISTANCE	
Characteristic:	Mho (memory polarized or offset) or Quad (memory polarized or nondirectionall, selectable individually per zone
Reactance polarization:	negative-sequence or zerosequence current
Non-homogeneity angle:	-40 to 40° in steps of 1
Number of zones:	5 -
Directionality:	Forward, Reverse, or NonDirectional per zone
Reach accuracy:	$\pm 5 \%$ including the effect of CVT transients up to an SIR of 30
Distance 30 characteristic angle:	
comparator limit	
angle:	
Directional supervision	
Characteristic angle: 30 to 90° in steps of 1	
Limit angle:	30 to 90° in steps of 1
	Zero-sequence compensation
Z0/Z1 magnitude:	0.00 to 10.00 in steps of 0.01
Z0/Z1 angle: $\quad-90$ to 90° in steps of 1	
Zero-sequence mutual compensation	
Z0M/Z1 magnitude:	0.00 to 7.00 in steps of 0.01
ZOM/Z1 angle: $\quad-90$ to 90° in steps of 1	
Right blinder (Quad only):	
$\begin{array}{ll}\text { Reach: } \\ \text { Characteristic angle: } & 0.02 \text { to } 500 \text { in steps of } 0.01 \\ 60 \text { to } 90^{\circ} \text { in steps of } 1\end{array}$	
Left blinder (Quad only):	
Reach:	0.02 to 500 in steps of 0.01
Characteristic angle: Time delay:	60 to 90° in steps of 1 0.000 to 65.535 s in st

PROTECTION

Current supervision:
Level:
Pickup:
Dropout:
Memory duration:
Voltage supervision
pickup (series applications):
Operation tim
Operation time: $\quad 1$ to 1.5 cycles (typical)
Reset time: 1 power cycle (typical)
GROUND DISTANCE OPERATING TME CURVES
The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).

LINE CURRENT DIFFERENTIAL (87L)
Application: $\quad 2$ or 3 terminal line, series compensated line, series line with charging current compensation
Pickup current level: $\quad 0.20$ to 4.00 pu in steps of 0.01
CT Tap (CT mismatch $\quad 0.20$ to 5.00 in steps of 0.01
factor):
Slope \# 1: $\quad 1$ to 50%
Slope \# 2: 1 to 70%
Breakpoint between $\quad 0.0$ to 20.0 pu in steps of 0.1
Slopes:
Operating Time:
Asymmetrical channel 1.0 to 1.5 power cycles duration
Asymmetrical channel asymmetry up to 10 ms
delay compensation
using GPS:
LINE CURRENT DIFFERENTIAL TRIP LOGIC
87L trip
Adds security for trip decision
DTT: \quad Creates 1 and 3 pole trip logic
and 3 pole) from remote L90
Stub bus protection: $\quad \begin{aligned} & \text { detect fault occurrence } \\ & \text { Security for ring bus and } 11 / 2\end{aligned}$ breaker configurations Security for sequential and evolving faults
Open pole detector:
LINE PICKUP
Phase IOC:
Undervoltage pickup:
Overvoltage delay:
LOAD ENCROACHMENT
Responds to:
0.000 to 30.000 pu
0.000 to 3.000 pu
0.000 to 65.535 s

Minimum voltage:
Reach (sec. W):
Impedance accuracy
Angle:
Angle accuracy:
Pickup delay:
Reset delay:
Time accuracy
Operate time:
LOSS OF EXCITATION
Operating condition:
Characteristic:
Center:
Positive-sequence quantities
0.000 to 3.000 pu in steps of 0.001
0.02 to 250.00 in steps of 0.01
$\pm 5 \%$
5 to 50° in steps of 1
$\pm 2^{\circ}$
0 to 65.535 s in steps of 0.001
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is
greater
$<30 \mathrm{~ms}$ at 60 Hz
Positive-sequence impedance
2 independent offset mho circles
Center: $\quad 0.10$ to 300.0 (sec.) in steps of
Radius: $\quad 0.10$ to 300.0. (sec.) in steps
Reach accuracy: $\pm 3 \%$
Reach accuracy: $\pm 3 \%$
Level: 0.00

Accuracy:

Pickup delay:
Timing accuracy:
Operate time:
0.000 to 1.250 pu in steps of
$\pm 0.5 \%$ of reading from 10 to $\frac{ \pm 0.5 \% \text { of reading from } 10 \text { to }}{208 \mathrm{~V}}$
0 to 65.535 s in steps of 0.001
$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is
greater

PROTECTION			
MECHANICAL JAM			
Operating condition:	Phase overcurrent		
Arming condition:	Motor not starting		
Pickup level:	1.00 to $10.00 \times$ FLA in steps of 0.01		
Dropout level:	97 to 98% of pickup		
Level accuracy:	at 0.1 to $2.0 \times \mathrm{CT}: \pm 0.5 \%$ of reading		
at > $2.0 \times$ CT rating:	$\pm 1.5 \%$ of reading		
Pickup delay:	0.10 to 600.00 s in steps of 0.01		
Reset delay:	0.00 to 600.00 s in steps of 0.01		
Time accuracy:	$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is greater		
MOTOR START SUPERVISION			
Maximum no. of starts:	1 to 16 in steps of 1		
Monitored time interval:	1 to 300 minutes in steps of 1		
Time between starts:	0 to 300 minu		
Restart delay:	0 to 50000seconds in steps of 1		
NEGATIVE SEQUENCE DIRECTIONAL OC			
Directionality:	Co-existing forward and reverse		
Polarizing:	Voltage		
Polarizing voltage:			
Operating current:	I_2 or I_O		
Level sensing:			
Zero-sequence:	$\left\|1 _0\right\|-K \times 1 _1 \mid$		
Negative-sequence:	\| 22 - K \times \|		
Restraint, K:	0.000 to 0.500 in steps of 0.001		
Characteristic angle:	0 to 90° in steps of 1		
Limit angle:	40 to 90° in steps of 1 , independent for forward and reverse		
Angle accuracy:			
Offset impedance:	0.00 to 250.00 W in steps of 0.01		
Pickup level:	0.05 to 30.00 pu in steps of 0.01		
Dropout level:	97 to 98\%		
Operation time:	$<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz		
NEGATIVE SEQUENCE IOC			
Current:	Phasor		
Pickup level:	0.000 to 30.000 pu in steps of 0.001		
Dropout level:	97 to 98% of Pickup		
Level accuracy:			
0.1 to $2.0 \times \mathrm{CT}$ rating:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greaterl> $2.0 \times \mathrm{CT}$		
	$\pm 1.5 \%$ of readin		
Overreach:	< 2\%		
Pickup delay:	0.00 to 600.00 s in steps of 0.01		
Reset delay:	0.00 to 600.00 s in steps of 0.01		
Operate time:	$<20 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz		
Timing accuracy:	Operate at $1.5 \times$ Pickup $\pm 3 \%$ or ± 4 ms (whichever is greater)		
NEGATIVE SEQUENCE OVERVOLTAGE			
Pickup level:	0.000 to 1.250 pu in steps of 0.001		
Dropout level:	97 to 98% of Pickup		
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V		
Pickup delay:	0 to 600.00 s in steps of 0.01		
Reset delay:	0 to 600.00 s in steps of 0.01		
Time accuracy:	$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$, whichever is greater		
Operate time:	$<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz		
NEGATIVE SEQUENCE TOC			
Current:	Phaso		
Pickup level:	0.000 to 30.000 pu in steps of 0.001		
Dropout level:	97\% to 98\% of Pic		
Level accuracy:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated (whichever is greater from 0.1 to		
	$2.0 \times$ CT rating $\pm 1.5 \%$ of readi		
Curve shape	$2.0 \times$ CT rating IEEE Moderately/Very/Extr		
	IEEE Moderately/Very/Extremely Inverse: IEC (and $B S$) $A / B / C$ and		
	Short Inverse; GE IAC Invers		
	Short/Very/Extremely Inverse;		
	12t; FlexCurves. (programmable);		
	Definite Time (0.01 s base curve)		
Curve multiplier(Time dial):			
Reset type:	Instantaneous/Timed (per IEEE) and Lear		
Timing accuracy:	Operate at > $1.03 \times$ Actual Pickup $\pm 3.5 \%$ of operate time or $\pm 1 / 2$ cycle		
NEUTRAL DIRECTIONAL OVERCURRENT			
Directionality: Co-existing forward and rever			
Polarizing: Volt			
Polarizing voltage: V_0 or			
Polarizing current: IG^{-1}			
Operating current: I_0			
Level sensing:	$\overline{3} \times$ \|	I_0 - K x	l_11), IG
	Restraint, K: $\quad 0.000$ to 0.500 in steps of 0.001		
Characteristic angle:	-90 to 90° in steps of 1		
Limit angle:	40 to 90° in steps of 1 , independent for forward and reverse		
Angle accuracy: $\quad \pm 2^{\circ}$			
Offset impedance: $\quad 0.00$ to 250.00 W in steps of 0.01			
Pickup level: $\quad 0.05$ to 30.00 pu in steps of 0.01			
Dropout level: $\quad 97$ to 98\%			
Operation time: $\quad<16 \mathrm{~ms}$ at $3 \times$ Pickup at 60 Hz			
NEUTRAL OVERVOLTAGE			
Pickup level: Polarizing:	0.000 to 3.000 pu in steps of 0.001		
	Voltage, Current, Dual, Dual-I, Dual-V		
Level accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V		
Pickup delay:	0.00 to 600.00 s in steps of 0.01		
Reset delay:	0.00 to 600.00 s in steps of 0.01		
Timing accuracy:	$\pm 3 \%$ or $\pm 20 \mathrm{~ms}$ (whichever is greater)		
Operate time:	< 30 ms at $1.10 \times$ Pickup at 60 Hz		

PROTECTION
Detects an open pole condition, monitoring breaker auxiliary contacts, the current in each phase and optional auxiliary contacts, the
voltages on the line

Current pickup level:

	0.001
Line capacitive reactances (XC1,	300.0 to 9999.9 sec . W in steps of 0.1
XCO):	
Remote current pickup level:	0.000 to 30.000 pu in steps of 0.001
Current dropout level:	Pickup + 3\%, not less than 0.05 pu
OVERFREQUENCY	
Pickup level:	20.00 to 65.00 Hz in steps of 0.01
Dropout level:	Pickup -0.03 Hz
Level accuracy:	$\pm 0.01 \mathrm{~Hz}$
Time delay:	0 to 65.535 s in steps of 0.001
Timer accuracy:	$\pm 3 \%$ or 4 ms , whichever is greater
PHASE COMPARISON	ROTECTION (87PC)
Signal Selection:	Mixed I_2-K \times I_1 (K=0.00 to 0.25 in steps of 0.01, or31_0)
Angle Reference:	0 to 360° leading in steps of 1
Fault detector low:	
Instantaneous	0.02 to 15.00 pu in steps of 0.01
Overcurrent:	
$I_{2} \times Z-V_{2}$:	0.005 to 15.00 pu in steps of 0.01
$\mathrm{d} / I_{2} / \mathrm{d}_{t}$:	0.01 to 5.00 pu in steps of 0.01
$\mathrm{d} l_{1} / \mathrm{dt}$:	0.01 to 5.00 pu in steps of 0.01
Fault detector High:	
Instantaneous	0.10 to 15.00 pu in steps of 0.01
Overcurrent:	

$I_{2} \times 2-V_{2}$:
$\mathrm{d}_{2} / \mathrm{d}_{\mathrm{t}}$
$\mathrm{d} l_{1} / \mathrm{dt}:$
Signal Symmetry
Adjustment:
Channel Delay
Adjustment
Channel
Adjustments:
Operate Time
(Typical):
Trip Security:
Second Coincidence
Timer:
Enhanced Stability
Angle:
Angle:
PHASE DIRECTIONAL
Relay connection:
Quadrature voltage
Quadrature voltage: $\quad 90^{\circ}$ (quadrature)
ABC phase seq.: phase A ($V_{B C}$), phase B $\left(V_{C A}\right)$.
ACB phase seq.: \quad phase $A\left(V_{C B}\right)$, phase $B\left(V_{A C}\right)$,
Polarizing voltage $\quad 0.000$ to 3.000 pu in steps of 0.001
threshold:
Current sensitivity
Characteristic angle: 0 to 359° in steps of 1
Angle accuracy: $\pm 2^{\circ}$
Operation time: (FlexLogic elements):
Operation time: (FlexLogic elements):
Tripping (reverse $<12 \mathrm{~ms}$, typically
load, forward fault):
Blocking (forward $<8 \mathrm{~ms}$, typically
oad, reverse fault
PHASE DISTANCE
Characteristic:

Number of zones:
 Directionality:

Reach (secondary W):
Reach accuracy:
Distance:
Characteristic angle
Comparator limit
angle:
Directional supervision
Characteristic angle: 30 to 90° in steps of 1
Limit angle: $\quad 30$ to 90° in steps of 1
Right blinder (Quad only)
$\begin{array}{ll}\text { Reach: } & 0.02 \text { to } 500 \text { in steps of } 0.01\end{array}$
Characteristic angle: 60 to 90° in steps of 1
Left Blinder (Quad only)
Reach: $\quad 0.02$ to 500 in steps of 0.01
Characteristic angle: 60 to 90° in steps of 1
Time delay:
Current supervision:
Level:
Pickup:
Dropout:
0.000 to 65.535 s in steps of 0.001
$\pm 3 \%$ or 4 ms , whichever is greater
line-to-line current
0.050 to 30.000 pu in steps of
0.001

97 to 98\%

PROTECTION Memory dur CT location:

5 to 25 cycles in steps of 1 all delta-wye and wye-delta transformers all delta-wye all delta-wye and wye-delta transformers
Voltage supervision 0 to 5.000 pu in steps of 0.001 pickup (series compensation applications):
PHASE DISTANCE OPERATING TIME CURVES
The operating times are response times of a
The operating times are response times of a
microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application The of the total response time for times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).

PHASE/NEUTRAL/GROUND IOC
Pickup level: $\quad 0.000$ to 30.000 pu in steps of 0.001
Dropout level: $\quad 97$ to 98% of pickup
Level accuracy:
0.1 to $2.0 \times \mathrm{CT}$.
rating:
$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated
$>2.0 \times$ CT rating: (whichever is greater)
Overreach:
Pickup delay:
Reset delay:
Operate time:
\pm
0.00 to 600.00 s in steps of 0.01
0.00 to 600.00 s in steps of 0.01
$<16 \mathrm{~ms}$ at $3 \times$ pickup at 60 Hz
pickup at 60 Hz (Neutral IOC)
Timing accuracy: Operate at $1.5 \times$ Pickup $\pm 3 \%$ or ± 4
PHASE/NEUTRAL/GROUS (whichever is greater)
Current: Phasor or RMS
Pickup level:
Phasor or RMS
0.000 to 30.000 pu in steps of 0.001
Dropout level: $\quad 97 \%$ to 98% of Pickup
$\begin{array}{ll}\text { Dropel accuracy: } & \text { for } 0.1 \text { to } 2.0 \times \mathrm{CT}: \pm 0.5 \% \text { of reading } \\ \text { Lever } & \text { or }+1 \% \text { of rated (whichever is }\end{array}$ or $\pm 1 \%$ of rated greater) for $>2.0 \times \mathrm{CT}$: $\pm 1.5 \%$ of greater) for $>2.0 \times \mathrm{CT}$ rating
Curve shapes: IEEE Moderately/Very/Extremely Inverse; IEC land BS) A/B/C and Short Inverse; GE IAC Inverse, Short/Very/ Extremely Inverse; 12t; FlexCurves. (programmable);
Curve multiplier: \quad Time Dial $=0.00$ to 600.00 in steps
Reset type: Instantaneous/Timed (per IEEE)
$\begin{array}{ll}\text { Reset type: } & \text { Operate at }>1.03 \times \text { actual Pickup } \\ \text { Timing accuracy: } & \\ & +3.5 \% \text { of operate time or }+1 / 2 \text { cycle }\end{array}$ (whichever is greater)
PHASE OVERVOLTAGE
$\begin{array}{ll}\text { Voltage: } & \text { Phasor only } \\ \text { Pickup level: } & 0.000 \text { to } 3.000 \text { pu in steps of } 0.001\end{array}$
$\begin{array}{ll}\text { Pickup level: } & 97 \text { to } 98 \% \text { of Pickup } \\ \text { Dropout level: } & \end{array}$
$\begin{array}{ll}\text { Dropout level: } & \pm 0.5 \% \text { of reading from } 10 \text { to } 208 \mathrm{~V} \\ \text { Level accuracy: } & \pm 0.00 \text { 而 }\end{array}$
Pickup delay:
Operate time: $\quad<30 \mathrm{~ms}$ at $1.10 \times$ Pickup at 60 Hz
Timing accuracy: $\quad \pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greate
PHASE UNDERVOLTAGE
Voltage: Phasor only
$\begin{array}{ll}\text { Pickup level: } & 0.000 \text { to } 3.000 \text { pu in steps of } 0.001 \\ \text { Dropout level: } & 102 \text { to } 103 \% \text { of Pickup }\end{array}$
Dropout level: $\quad 102$ to 103% of Pickup
Level accuracy: $\quad \pm 0.5 \%$ of reading from 10 to 208 V
Curve shapes: GE IAV Inverse; Definite Time 10.1
Curve multiplier: \quad Time Dial $=0.00$ to 600.00 in steps
Timing accuracy: Operate at $<0.90 \times$ Pickup $\pm 3.5 \%$ of Operate at $<0.90 \times$ Pickup $\pm 3.5 \%$ of
operate time or $\pm 4 \mathrm{~ms}$ (whichever is greater)
PILOT-AIDED SCHEMES
Direct Underreaching Transfer Trip (DUTT)
Permissive Underreaching Transfer Trip (PUTT)
Permissive Overreaching Transfer Trip (POTT)
Hybrid POTT Scheme
Directional Comparison Blocking Scheme
Customizable version of the POTT and DCB schemes
(POTT1 and DCB1)

Protection	
POWER SWING DETECT	
Functions:	Power swing block, Out-of-st
Characteris	Mho or Quad
Measured impedance:	Positive-sequence
Blocking / trippingmozes:	
Tripping mode:	Early or Delayed
Current supervision:	
Pickup level:	0.050 to 30.000 pu in steps of 0.001
Dropout level: 97	
(sec. W):	0.10 to 500.00 W in steps of 0.01
Left and right blinders 0.10 to 500.00 W in steps of 0.01(sec. W):	
Impedance accuracy:	$\pm 5 \%$
Fwd / reverse angle $\quad 40$ to 90° in steps of 1	
Angle accuracy: ± 2	
Characteristic limit 40angles:	
Timers:	0.000 to 65.535 s in steps of 0.001
Timing accuracy: $\pm 3 \%$ or 4 ms , whichever is greater RATE OF CHANGE OF FREOUENCY	
df/dt trend:	increasing, decreasing, bi-directional
df/dt pickup level: df/dt dropout level:	0.10 to $15.00 \mathrm{~Hz} / \mathrm{s}$ in steps of 0.01 96% of pickup $80 \mathrm{mHz} / \mathrm{s}$ or 3.5%, whichever is
	greate
Overvoltage supv.:	0.100 to 3.000 pu in steps of 0.001
Overcurrent supv.:	0.000 to 30.000 pu in steps of 0.001
Pickup delay:	0 to 65.535 s in steps of 0.001
Reset delay:	0 to 65.535 sin steps of 0.00
Time accuracy:	$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
95\% settling time for df/dt:	< 24 cycles
Operate time:	
at $2 \times$ pickup: 12 cycles	
RESTRICTED GROUND FAULT	
Pickup:	0.000 to 30.000 pu in steps of 0.001
Dropout:	97 to 98% of Pickup
Slope:	0 to 100% in steps of 1%
Pickup delay:	0 to 600.00 s in steps of 0.01
Dropout delay:	0 to 600.00 s in steps of 0.01
Operate time:	< 1power system cycle
SENSITIVE DIRECTIONAL POWER	
Measured power:	3-phase, true RMS
Number of stages:	
Characteristic angle:	0 to 359° in steps of 1
Calibration angle:	0.00 to 0.95° in steps of 0.05
Minimum power:	-1.200 to 1.200 pu in steps of 0.001
Pickup level accuracy:	$\pm 1 \%$ or $\pm 0.001 \mathrm{pu}$, whichever is greater
Hysteresis:	2% or 0.001 pu , whichever is greater
Pickup delay:	0 to 600.00 s in steps of
Time accuracy:	$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$, whichever is greater
Operate time:	50 ms
SPLIT PHASE PROTECTION	
Operating quantity:	split phast CT current biased by generator load current
Pickup level:	0.000 to 1.500 pu in steps of 0.001
Dropout level:	97 to 98% of pickup
Level accuracy:	$\pm 0.5 \%$ of reading or $\pm 1 \%$ of rated
Pickup delay:	0.000 to 65.535 s in steps of 0.001
Time accuracy:	$\pm 3 \%$ of \pm cycles, whichever is greater
Operate time:	<5 cycles at $1.10 \times$ pickup at 60 Hz
STATOR DIFFERENTIAL	
Pickup:	0.050 to 1.00 pu in steps of 0.01
Slope 1/2:	1 to 100% in steps of 1
Break 1:	1.00 to 1.50 pu in steps of 0.01
Break 2 :	1.50 to 30.00 pu in steps of 0.01
SYNCHROCHECK	
Max voltage difference:	0 to 400000 V in steps of 1
Max angle difference:	0 to 100° in steps of 1
Max freq. difference:	0.00 to 2.00 Hz in steps of 0.01
Hysteresis for max. freq. diff:	0.00 to 0.10 Hz in steps of 0.01
Dead source function:	None, LV1 \& DV2, DV1 \& LV2, DV1 or DV2, DV1 xor DV2, DV1 \& DV2 (L = Live, $\mathrm{D}=$ Dead)

PROTECTION
Collects trip and reclose input requests and issues outputs to control tripping and reclosing.
Communications timer 0 to 65535 s in steps of 0.001 delay:
delay:
Evolving fault timer: $\quad 0.000$ to 65.535 s in steps of

Timing accuracy:	$\pm 3 \%$ or 4 ms , whichever is greater
UNDERFREQUENCY	
Minimum signal:	0.10 to 1.25 pu in steps of 0.01
Pickup level:	20.00 to 65.00 Hz in steps of 0.01
Dropout level:	Pickup +0.03 Hz
Level accuracy:	$\pm 0.01 \mathrm{~Hz}$
Time delay:	0 to 65.535 s in steps of 0.001
Timer accuracy:	$\pm 3 \%$ or 4 ms , whichever is greater
VOLTS PER HERTZ	
Voltage:	Phasor only
Pickup level:	0.80 to 4.00 in steps of 0.01 $\mathrm{pu} \mathrm{V} / \mathrm{Hz}$
Dropout level:	97 to 98\% of Pickup
Level accuracy:	± 0.02 pu
Timing curves:	Definite Time; Inverse A, B, and C, FlexCurves. A, B, C, and D
TD Multiplier:	0.05 to 600.00 s in steps of 0.01
Reset delay:	0.0 to 1000.0 s in steps of 0.1
Timing accuracy:	$\pm 3 \%$ or $\pm 4 \mathrm{~ms}$ (whichever is greater)
VT FUSE FAIL	
Monitored parameters:	V_2, V_1, I_1
WATTMETRIC ZERO-SEQUENCE DIRECTIONAL	
Measured Power	Zero-Sequence
Number of Elements:	2
Characteristic Angle:	0 to 360° in steps of 1
Minimum Power:	0.001 to 1.20pu in steps of 0.001
Pickup Level Accuracy:	$\pm 1 \%$ or $\pm 0.0025 \mathrm{pu}$, whichever is greater
Pickup Delay:	Definite time $(0$ to 600.00 s in steps of 0.01), inverse time, or FlexCurve
Inverse Time Multiplier:	0.01 to 2.00 s in steps of 0.01
Time Accuracy:	$\pm 3 \%$ or $\pm 8 \mathrm{~ms}$, whichever is greater
Operate Time:	$<30 \mathrm{~ms}$ at 60 Hz

MONITORING	
DATA LOGGER	
Number of channels:	1 to 16
Parameters:	Any available analog actual value
Sampling rate:	15 to 3600000 ms in steps of 1
Trigger:	Any FlexLogic operand
Mode:	Continuous or Triggered
Storage capacity:	(NN is dependent on memory)
1-second rate:	01 channel for NN days
60-minute rate:	16 channels for NN days
	01 channel for NN days
	16 channels for NN days
EVENT RECORDER	
Capacity:	1024 events
Time-tag:	to 1 microsecond
Triggers:	Any element pickup, dropout or operate Digital input change of state Digital output change of state Self-test events
FAULT LOCATOR	
Method:	Single-ended
Maximum accuracy if:	Fault resistance is zero or fault currents from all line terminals are in phase
Relay accuracy: Worst-case accuracy:	$\pm 1.5 \%$ (V > $10 \mathrm{~V}, \mathrm{I}>0.1 \mathrm{pu})$
	VT\%error + (user data)
	CT\%error + (user data)
	ZLine\%error + (user data)
	METHOD\%error + (Chapter 6)
	RELAY ACCURACY\%error + (1.5\%)
HIGH-IMPEDANCE FAULT DETECTION (HIZ)	
Detections:	Arc Suspected, Arc Detected, Downed Conductor, Phase
OSCILLOGRAPHY	
Maximum records:	64
Sampling rate:	64 samples per power cycle
Triggers:	Any element pickup, dropout or operate
	Digital input change of state
	Digital output change of state
	Any FlexLogic Operand
	FlexLogic Equation
Data:	AC input channels
	Element state
	Digital input state
	Digital output state
Data storage:	In non-volatile memory
USER-PROGRAMMABLE FAULT REPORT	
Number of elements:	2
Pre-fault trigger:	any FlexLogic. operand
Fault trigger:	any FlexLogic. operand
Recorder quantities:	32 (any FlexAnalog value)

MONITORING	
PHASOR MEASUREMENT UNIT	
Output format:	per IEEE C37.118 standard
Number of channels:	14 synchrophasors, 16 analogs, 16 digitals
TVE (total vector error):	<1\%
Triggering:	frequency, voltage, current, power, rate of change of frequency, user-defined
Reporting rate:	$1,2,5,10,12,15,20,25,30,50,60$ or 120 times per second
Number of clients:	One over TCP/IP port, two over UDP/IP ports
TAC ranges:	As indicated in appropriate specifications sections
Network reporting format:	16 -bit integer or 32 -bit IEEE floating point numbers
Network reporting style:	Rectangular (real and imaginary) or polar (magnitude and angle) coordinates
Filtering:	P and M class
Calibration:	Angle $\pm 5^{\circ}$, magnitude $+/-5 \%$ per phase
Compensation:	-180 to 180° in steps of 30° (current and voltage components)
Mode of operation:	Normal and test
PMU Recording:	46 configurable channels (14 syncrophasor, 16 digital, 16 analogs)

METERING
RMS CURRENT: PHASE, NEUTRAL, AND GROUND
Accuracy at:

Accuracy at:	
0.1 to $2.0 \times$ CT rating:	$\pm 0.25 \%$ of reading or $\pm 0.1 \%$ of rated (whichever is greater)
> $2.0 \times$ CT rating:	$\pm 1.0 \%$ of reading
RMS VOLTAGE	
Accuracy:	$\pm 0.5 \%$ of reading from 10 to 208 V
REAL POWER (WATTS)	
Accuracy:	$\pm 1.0 \%$ of reading at $-0.8<\mathrm{PF}<$ -1.0 and $0.8<$ PF <1.0
REACTIVE POWER (VARS)	
Accuracy:	$\pm 1.0 \%$ of reading at $-0.2<\mathrm{PF}<0.2$
APPARENT POWER (VA)	
Accuracy:	$\pm 1.0 \%$ of reading
WATT-HOURS (POSITIVE AND NEGATIVE)	
Accuracy:	$\pm 2.0 \%$ of reading
Range:	± 0 to $2 \times 109 \mathrm{MWh}$
Parameters:	3-phase only
Update rate:	50 ms
VAR-HOURS (POSITIVE AND NEGATIVE)	
Accuracy:	$\pm 2.0 \%$ of reading
Range:	± 0 to 2×109 Mvarh
Parameters:	3-phase only
Update rate:	50 ms
CURRENT HARMONICS	
Harmonics:	2nd to 25th harmonic: per phase, displayed as a \% of f1 (fundamental frequency phasor) THD: per phase, displayed as a \% of f1

$\begin{array}{ll}\text { Accuracy: } & \text { Harmonics: }\end{array} \quad \mathrm{f} 1>0.4 \mathrm{pu}:(0.20 \%+0.035 \%$. 1 > >0.4 pu: $(0.20 \%+0.035 \%$ 100%, whichever is greater 100%, whichever is greater
$2 . f 1<0.4$ pu: as above plus \%erro
THD: \quad of f1 \quad f1 >0.4 pu: $(0.25 \%+0.035 \% /$ 1. f1 > 0.4pu: $(0.25 \%+0.035 \%$ harmonicl of reading or 0.20% of 100%, whichever is greater
.f1<0.4pu: as above plus \%error
DEMAND
Measurements:

Accuracy:
Phases A, B, and C present and maximum measured currents 3-Phase Power (P, Q, and S 3-Phase Power (P, Q, and S)
present and maximum measured present and maximum measured
currents currents
FREQUENCY
Accuracy at
$\mathrm{V}=0.8$ to 1.2 pu :
$\mathrm{I}=0.1$ to $0.25 \mathrm{pu}:$
I > 0.25 pu:
VOLTAGE HARMONICS
Harmonics:

Accuracy:
Harmonics

THD:
$\pm 0.01 \mathrm{~Hz}$ (when voltage signal is $\pm 0.01 \mathrm{~Hz}$ (when voltage signal is $\pm 0.05 \mathrm{~Hz}$
$\pm 0.02 \mathrm{~Hz}$ lwhen current signal is used for frequency measurement

2nd to 25th harmonic: per phase, displayed as a \% of f1 (fundamental frequency phasor) THD: per phase, displayed as a off

1. $f 1>0.4$ pu: $10.20 \%+0.035 \%$ harmonic) of reading or 0.15% of 100%, whichever is greater 2. f1 < 0.4 pu: as above plus \%error of f1
2. $\mathrm{f} 1>0.4 \mathrm{pu}:(0.25 \%+0.035 \% /$ harmonic) of reading or 0.20% of 100%, whichever is greater 2. f1 < 0.4pu: as above plus \%error

SER-PROGRAMMABLE ELEMENTS	
CONTROL PUSHBUTTONS	
Number of pushbuttons:	3 (standard) or 16 (optional)
Operation:	drive FlexLogic. operan
FLEXCURVES	
Number:	4 (A through D)
Reset points:	40 (0 through 1 of pickup)
Operate points:	80 (1 through 20 of pickup)
Time delay:	0 to 65535 ms in steps of 1
FLEXLOGIC	
Programming language:	Reverse Polish Notation with graphical visualization (keypad programmable)
Lines of code:	
Internal variable	64
Supported operations:	NOT, XOR, OR (2 to 16 inputs), AND 12
	to 16 inputs), NOR (2 to 16
	inputs),
	NAND (2 to 16 inputs), Latch
	(Reset Dominant), Edge
	Detectors,
	Timers
Inputs:	any logical variable, contact,
	or virtual input
Pickup delay:	0 to 60000 (ms, sec., min.) in
Pickup delay.	steps of 1
Dropout delay:	0 to 60000 (ms, sec., min.) in steps of 1
FLEXELEMENTS	
Number of elements:	8 or 16
Operating signal:	any analog actual value, or two values in Differential
	mode
Operating signal mode:	Signed or Absolute Value
	Level, Delta
Comparator direction:	Over, Under
	-30.000 to 30.000 pu in steps of 0.001
Hysteresis:	0.1 to 50.0% in steps of 0.1
Delta dt:	20 ms to 60 days
Pickup \& dropout delay:	0.000 to 65.535 s in steps of 0.001
FLEXSTATES	
Number:	up to 256 logical variables grouped
	under 16 Modbus addresses
Programmability:	any logical variable, contact, or virtual input
LED TEST	
Initiation:	from any digital input or user-
	programmable condition
Number of tests:Duration of full test:	3 , interruptible at any time
	approximately 3 minutes
Test sequence 1:	all LEDs on
Test sequence 2 :	all LEDs off, one LED at a time on for 1 s
Test sequence 3 :	all LEDs on, one LED at a time
NON-VOLATILE LATCHES	
Type:	Set-dominant or Reset-
Number:	16 (individually programmed)
Output:	Stored in non-volatile memory
Execution sequence:	As input prior to protection, control, and FlexLogic.
SELECTOR SWITCH	
Number of elements:	2
Upper position limit:	1 to 7 in steps of 1
Selecting mode:	Time-out or Acknowledge
Time-out timer:	3.0 to 60.0 s in steps of 0.1
Control inputs:	step-up and 3-bit
Power-up mode:	restore from non-volatile memory or synchronize to a
	3 -bit control input
USER-DEFINABLE DISPLAYS	
Number of displays:	16
Lines of display:	2×20 alphanumeric characters
Parameters:	up to 5 , any Modbus register
	addresses
Invoking and scrolling:	keypad, or any userprogrammable condition, including pushbuttons
USER-PROGRAMMABLE LEDS	
Number:	48 plus Trip and Alarm
Programmability:	from any logical variable, contact, or virtual input
Reset mode:	Self-reset or Latched
USER-PROGRAMMABLE PUSHBUTTO	
Number of pushbuttons:	12
Mode:	Self-Reset, Latched
Display message:	2 lines of 20 characters each
8 -BIT SWITCH	
Number of elements:	6
Input signals: Control: Response time:	two 8-bit integers via FlexLogic operands any FlexLogic operand $<8 \mathrm{~ms}$ at 60 Hz , $<10 \mathrm{~ms}$ at 50 Hz

INPUTS	
AC CURRENT	
CT rated primary:	1 to 50000 A
CT rated secondary:	1 A or 5 A by connection
Nominal frequency:	20 to 65 Hz
Relay burden:	< 0.2 VA at rated secondary
Conversion range:	
Standard CT:	0.02 to $46 \times \mathrm{CT}$ rating RMS symmetrical
Sensitive Ground/HI-Z CT module:	
	0.002 to $4.6 \times \mathrm{CT}$ rating RMS symmetrical
Current withstand:	20 ms at 250 times rated
	1 sec . at 100 times rated continuous at 3 times rated
	continuous $4 \times$ Inom; URs equipped with 24 CT inputs have a maximum operating temp. of $50^{\circ} \mathrm{C}$
AC VOLTAGE	
VT rated secondary:	50.0 to 240.0 V
VT ratio:	1.00 to 24000.00
Nominal frequency:	20 to 65 Hz For the L90, the nominal system frequency should
Relay burden:	$<0.25 \mathrm{VA}$ at 120 V
Conversion range:	1 to 275 V
Voltage withstand:	continuous at 260 V to neutral $1 \mathrm{~min} . / \mathrm{hr}$ at 420 V to neutral
CONTACT INPUTS	
Dry contacts:	1000Ω maximum
Wet contacts:	300 V DC maximum
Selectable thresholds:	$17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Tolerance:	$\pm 10 \%$
Contacts PerCommon Return:	
Recognition time:	$<1 \mathrm{~ms}$
Debounce timer:	0.0 to 16.0 ms in steps of 0.5
Continuous Current	3 mA (when energized)
Draw:	
CONTACT INPUTS WITH AUTO-BURNISHING	
Dry contacts:	1000Ω maximum
Wet contacts:	300 V DC maximum
Selectable thresholds:	$17 \mathrm{~V}, 33 \mathrm{~V}, 84 \mathrm{~V}, 166 \mathrm{~V}$
Tolerance:	$\pm 10 \%$
Contacts Per	2
Common Return:	
Recognition time:	$<1 \mathrm{~ms}$
Debounce timer:	0.0 to 16.0 ms in steps of 0.5
Draw:	
Duration of Auto-	25 to 50 ms
Burnish Impulse:	
DCMA INPUTS	
Current input (mA	0 to $-1,0$ to $+1,-1$ to $+1,0$ to 5,0 to
DC):	10, 0 to 20,4 to 20 (programmable)
Input impedance:	$379 \pm 10 \%$
Conversion range:	-1 to +20 mA DC
Accuracy:	$\pm 0.2 \%$ of full scale
Type:	Passive
DIRECT INPUTS	
Number of input points:	32
No. of remote	16
devices:	
Default states on loss of comms.:	On, Off, Latest/Off, Latest/On
Ring configuration:	Yes, No
Data rate:	64 or 128 kbps
CRC:	32-bit
CRC alarm:	
Responding to: Monitoring message	Rate of messages failing the CRC 10 to 10000 in steps of 1
Monitoring message count:	
Alarm threshold:	1 to 1000 in steps of 1
Unreturned message alarm:	
Responding to:	Rate of unreturned messages in the ring configuration
Monitoring message count:	10 to 10000 in steps of 1
Alarm threshold:	1 to 1000 in steps of 1
IRIG-B INPUT	
Amplitude modulation:	1 to 10 V pk-pk
DC shift:	TTL
Input impedance:	22 kW
Isolation:	2 kV
REMOTE INPUTS (IEC 61850 GSSE)	
Number of input points:	32, configured from 64 incoming bit pairs
Number of remote devices:	16
Default states on loss of comms.:	On, Off, Latest/Off, Latest/On
RTD INPUTS	
Types (3-wire):	
	120Ω Nickel, 10Ω Copper
Sensing current:	5 mA
Range:	-50 to $+250^{\circ} \mathrm{C}$
Accuracy: Isolation:	$\begin{aligned} & \pm 2^{\circ} \mathrm{C} \\ & 36 \vee \text { pk-pk } \end{aligned}$

COMMUNICATIONS					
RS232					
Front port:			19.2 kbps, Modbus® RTU, DNP 3.0		
RS485					
1 or 2 rear ports:			Up to 115 kbps, Modbus® RTU, DNP 3.0 isolated together at 36 Vpk		
Typical distance: Isolation:			1200 m2 kV		
ETHERNET PORT					
10Base-F:			820 nm, multi-mode, supports half-duplex/full-duplex fiber optic with ST connector		
Redundant 10Base-F:			820 nm , multi-mode, half-duplex/full-duplex fiber optic		
10Base-T:			RJ45 connector		
Power budget:			10 dB		
Max optical input power: Max optical output			$-7.6 \mathrm{dBm}$		
			$-20 \mathrm{dBm}$		
			-30 dBm		
Typical distance: SNTP clock			1.65 km		
SNTP clocksynchronization error:			0 ms Ityp		
PROTOCOLS					
	RS232	RS485	10BaseF	10BaseT	100BaseT
IEC 61850			-	-	-
DNP 3.0	-	-	-	-	-
Modbus	-	-	-	-	-
IEC104			-	-	-
EGD			-	-	-

INTER-RELAY COMMUNICATIONS
SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE
RS422	1200 m
G.703	100 m

* NOTE: RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.
LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820nm LED Multimode	-20 dBm	-30 dBm	10 dB
1300 nm LED Multimode	-21 dBm	-30 dBm	9 dB
1300 nm ELED Multimode	-21 dBm	-30 dBm	9 dB
1300 nm Laser Singlemode	-1 dBm	-30 dBm	29 dB
1550 nm Laser Singlemode	+5 dBm	-30 dBm	35 dB

* NOTE: These power budgets are calculated from the manufacturers' worst-case transmitter power and worstcase receiver sensitivity.
MAXIMUM OPTICAL INPUT POWER

EMITTED, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1500 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTED TYPE	FIBER TYPE	CONNECTOR TYPE	TYPICAL DISTANCE
820 nm LED	Multimode	-7.6 dBm	1.65 km
1300 nm LED	Multimode	-11 dBm	3.8 km
1300 nm ELED	Singlemode	-14 dBm	11.4 km
1300 nm Laser	Singlemode	-14 dBm	64 km
1500 nm Laser	Singlemode	-14 dBm	105 km

INTER-RELAY COMMUNICATIONS Note: Typical distances listed are based on the following assu installation to another the distance covered by your one installation to an System may vary

ST connector	2 dB
FIBER LOSSES	
820 nm multimode	$3 \mathrm{~dB} / \mathrm{km}$
1300 nm mulimode	$1 \mathrm{~dB} / \mathrm{km}$
1300 nm singlemode	$0.35 \mathrm{~dB} / \mathrm{km}$
1550 nm singlemode	$0.25 \mathrm{~dB} / \mathrm{km}$
Splice losses:	One splice every 2 km , at 0.05
SYSTEM MARGIN	dB loss per splice

3 dB additional loss added to calculations to compensate 3 dB additional loss
for all other losses.

Compensate difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

POWER SUPPLY	
LOW RANGE	
Nominal DC voltage: 2	24 to 48 V at 3 A
Min/max DC voltage: 20	$20 / 60 \mathrm{~V}$
* NOTE: Low	Low range is DC only.
HIGH RANGE	
Nominal DC voltage: 125	125 to 250 V at 0.7 A
Min/max DC voltage: 88	$88 / 300 \mathrm{~V}$
Nominal AC voltage: 100	100 to 240 V at $50 / 60 \mathrm{~Hz}, 0.7 \mathrm{~A}$
Min/max AC voltage: 88	$88 / 265 \mathrm{~V}$ at 48 to 62 Hz
ALL RANGES	
Volt withstand: $\quad 2$	$2 \times$ Highest Nominal Voltage for 10 ms
Voltage loss hold-up: 50	50 ms duration at nominal
Power consumption: Ty	Typical $=15 \mathrm{VA}$; Max. $=30 \mathrm{VA}$
INTERNAL FUSE	
RATINGS	
Low range power 8	$8 \mathrm{~A} / 250 \mathrm{~V}$
supply:	
High range power 4	$4 \mathrm{~A} / 250 \mathrm{~V}$
supply:	
INTERRUPTING CAPACITY	
AC: 100	100000 A RMS symmetrical
$\begin{array}{ll}\text { DC: } \\ \text { Hold up time: } & 10 \\ \end{array}$	10000 A
	200 ms
TYPE TESTS	
Electrical fast transient:	t: ANSI/IEEE C37.90.1
	IEC 61000-4-4
	IEC 60255-22-4
Oscillatory transient:	ANSI/IEEE C37.90.1
	IEC 61000-4-12
Insulation resistance:	IEC 60255-5
Dielectric strength:	IEC 60255-6
	ANSI/IEEE C37.90
Electrostatic discharge:	e: EN 61000-4-2
Surge immunity:	EN 61000-4-5
RFI susceptibility:	ANSI/IEEE C37.90.2
	IEC 61000-4-3
	IEC 60255-22-3
	Ontario Hydro C-5047-77
Conducted RFI:	IEC 61000-4-6
Voltage dips/interruptions/variations:	
	IEC 61000-4-11
Power frequency magnetic field immunity:	
IEC 61000-4-8	
Vibration test(sinusoidal):	IEC 60255-21-1
Shock and bump:	IEC 60255-21-2
* NOTE:	Type test report available upon request.

PRODUCTION TESTS		
THERMAL		
Products go through an environmental test based upon an accepted quality level (AQL) sampling process		
ENVIRONMENTAL		
OPERATING TEMPERATURES		
Cold:	IEC 60028-2-1, 16 h at $-40^{\circ} \mathrm{C}$	
Dry Heat:	IEC 60028-2-2, 16 h at $+85^{\circ} \mathrm{C}$	
OTHER		
Humidity(noncondensing):		
	IEC 60068-2-30, 95\%, Variant 1,6days.	
Altitude:	Up to 2000 m	
Installation Category:	\\|	
APPROVALS		
UL Listed for the USA	anada	

UL Listed for the USA and Canada
Manufactured under an ISO9000 registered system.
c
LVD 73/23/EEC: IEC 1010-1
EMC 81/336/EEC: EN 50081-2, EN 50082-2

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council.GE, the GE monogram, Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes

Copyright 2013, General Electric Company.

