TOSHIBA
 Leading Innovation >>>

GR-200 Series GRB 200

Busbar Protection IED

GR-200 series -

The GR-200 Series is Toshiba's next generation of protection and control IED's, designed for transmission/distribution networks and providing a platform for distributed and renewable energy systems and railway applications. Flexible adaptation is enabled using extensive hardware and modular software combinations facilitating an application oriented solution.

Meeting your needs -

Extensive hardware and modular software combinations provide the flexibility to meet your application and engineering requirements.
Future upgrade paths and minor modifications are readily achievable on demand.

Powerful and wide application -

In addition to protection \& control, GR-200 has been designed to meet the challenges and take advantage of developments in information \& communications technology.

APPLICATION

GRB200 low impedance differential relay for busbar protection is implemented on Toshiba's next generation GR-200 series IED platform and has been designed to provide very reliable, high speed and selective protection for various types of busbar system. This powerful and user-friendly IED will provide you with the flexibility to meet your application and engineering requirements, in addition to offering outstanding performance, high quality and operational peace of mind.

- GRB200 can be applied for various busbar systems.
- Single busbars with/without transfer busbar
- Double busbars with/without transfer busbar
- Ring busbars with/without transfer busbar
- One and a half busbar
- Four bus-coupler busbar
- GRB200 can detect phase and earth faults on the protected busbar by employing a phase segregated current differential scheme. A maximum of 64 three-phase currents can be input from feeders, sections and bus-couplers, which can correctly distinguish between internal and external faults even in the event of CT saturation.
- Circuit breaker failure protection, end zone protection and blind zone protection are also available.
- Backup overcurrent and earth fault protections are provided as options in each bay.
- Communications
- Within a substation automation system or to a remote control centre, IEC 61850-8-1 [Station bus], Modbus® RTU protocol and IEC 60870-5-103.

FEATURES

- Application

GRB200 can be applied for various busbar systems.

- Single busbars with/without transfer busbar
- Double busbars with/without transfer busbar
- Ring busbars with/without transfer busbar
- One and a half busbar
- Four bus-coupler busbar

GRB200 incorporates a single central unit (CU) and bay units (BU). The CU performs current differential protection. The BU is a terminal used to acquire analogue data from each CT which is converted to digital data for transmission to the CU via optical fiber for the differential protection. The BU also receives the trip command from the CU and performs tripping of the circuit breaker. The CU can be provided with an optional voltage check element.
Centralized or Decentralized installation is available.

A system installation example is shown in Figure 1.

- Functionality

- Eight settings groups
- Automatic supervision
- Metering and recording functions
- Time synchronization by external clock such as IRIG-B and system network
- Communication
- System interface - RS485, Fiber optic, 100BASE-TX,-FX
- Multi protocol - DNP3.0, Modbus® RTU, IEC 60870-5-103 and IEC 61850

- Security

- Password protection

- Flexibility

- Various models and hardware options for flexible application depending on system requirement and controlled object
- Combined 1A / 5A current inputs
- Multi range DC power supply: 24 to 60V / 60 to $110 \mathrm{~V} / 110$ to 250 V
- Multi-language options
- Configurable binary inputs and outputs
- Programmable control, trip and alarm logic with PLC tool software
- Human Machine Interface
- Graphical LCD and 24 LEDs
- 7 configurable function keys
- USB port for local PC connection
- Direct control buttons for open/close (O/I) and control authority (43R/L)
- Help key for supporting operation
- Monitoring terminals for testing

Figure 1 System Installation Example

FUNCTIONS

- Protection
- Low impedance differential protection for up to 8 discriminating zones and check zone
- Percentage restrained characteristic ensures stability against external faults
- Countermeasure for CT saturation
- Available for busbar with different CT ratio
- Dynamic busbar replica
- BU out of service
- Circuit breaker failure protection
- End zone protection and blind zone protection
- Backup Overcurrent and Earth fault protection
- Independent voltage check element (option)

- Monitoring

- CT failure detection
- Status and condition monitoring of primary apparatus
- Switchgear operation monitoring
- Plausibility check
- Measurement of I, V(option) and f
- Measurement and supervision of individual and total harmonic content up to 15th, sag, swell, interruption
- Current and voltage circuit supervision

- HMI function

- Selection of HMI: Standard LCD / large LCD
- Large LCD supports single line diagram indication or multi-language option
- 24 configurable tri-state LEDs selectable red/green/yellow
- 7 Programmable function keys for user configurable operation

- Recording

- Fault record
- Event record
- Disturbance record

- Communication

- IEC 60870-5-103 / IEC 61850
- Modbus® RTU / Modbus® TCP/IP
- General functions
- Eight settings groups
- Automatic supervision
- Metering and recording functions
- Time synchronization by external clock using IRIG-B or system network
- Password protection for settings and selection of local / remote control
- Checking internal circuit by forcible signal.
- Checking internal circuit using monitoring jacks.

PROTECTION

- Busbar Differential Protection

GRB200 applies current differential protection for each individual busbar zone, which are sectioned by the bus section and buscoupler switches (discriminating zone protection), as well as for the overall busbar system (check zone protection)

The discriminating zone protection, inputs current and disconnector position signals from feeders, transformer banks, busbar sections and buscouplers which are connected to the protected zone, and outputs trip signals to all the circuit breakers of the zone. The zone covered by the discriminating zone protection depends on the busbar configuration and varies with open/close status of the disconnectors. GRB200 introduces a replica setting which identifies which circuit is connected to which zone and follows changes in busbar operation. Up to eight zone protections are available by employing relevant input currents and disconnector signals.

The check zone protection inputs currents from all feeder bays and transformer banks and performs overall differential protection for the entire busbar system and outputs trip signals to all the circuit breakers. As the protection does not use the disconnector position signals, the check zone protection is very secure against such false operation in the no-fault and through fault conditions.

By using these two protections, GRB200 ensures a very reliable protection for various types of busbar system.

Figure 2 shows a typical application to a double busbar system. DIFCH is the check zone protection which covers all busbars. DIFZA and DIFZB are the discriminating zone protections for busbars A and B respectively. The voltage elements UVSFA, UVSFB, UVGFA, UVGFB, OVGFA and OVGFB can be provided for each busbar as the voltage check function (optional).

Figure 3 shows the scheme logic with check zone protection, discriminating zone protections and voltage check function for a double busbar system.

Figure 2 Typical Application to Double Busbar System

Figure 3 Scheme Logic with Check Zone, Discriminating Zone and Voltage Check

- Discriminating zone and check zone elements The check zone element (DIFCH) and discriminating zone elements (DIFZA - DIFZD) are based on the current differential principle and have a differential characteristic for the small current region, and a percentage restraint characteristic for the large current region to cope with erroneous differential current caused by a through-fault current.

The characteristics are shown in Figure 4, and each zone (DIFCH, DIFZA - DIFZD) and each phase (A, B, C phase) have these characteristics respectively.

Figure 4 Characteristic of Current Differential Element

The minimum operating current (ldk) and the percent slope (k) of the restraint characteristic in the large current region are user-programmable.

CT saturation under external fault conditions can be a serious problem for busbar protection. GRB200 overcomes the CT saturation problem by using a "CT saturation detection" function. When an external fault occurs, a very large erroneous current may be caused by CT saturation. However, once the CT saturates, there is a short period of several milliseconds of non-saturation between the saturation periods in a cycle. By detecting this non-saturation period, the current differential element can be blocked to prevent false operation arising from CT saturation.

Figure 5 Waveform for CT saturation

- Breaker Failure Protection

Phase-segregated breaker failure protection is provided for each bay and can be initiated by either an internal or external signal.

When an overcurrent element remains in operation after a tripping signal has been issued the breaker is judged to have failed and a 2 stage CBF sequence is initiated. The first stage issues a re-trip command to the circuit breaker. If this also fails then the command to backtrip adjacent circuit breakers is executed. The overcurrent element has a high-speed reset time.

GRB200 has two kinds of timer for Breaker Failure Protection. One timer is used for re-trip, the other timer is used for CBF trip.

A remote transfer trip is provided for feeder circuits.

- End zone and Blind Zone Protection

This function is provided to cater for circumstances when a dead zone or blind zone is created between the CB and the associated CT.

End zone protection detects a fault located between the CB and the associated CT when the CB is open. Depending on the location of the $C T$, either the busbar section CB is tripped or an intertrip is sent to the CB at the remote end of the line.

Blind zone protection is used to detect and trip for faults located between the bus-section CB and the associated CT for the arrangement when the CT is installed on one side of the CB only.

- BU out-of-Service Function

GRB200 provides a BU out-of-service function for maintenance purposes. When a particular BU is set to out-of-service condition, it is excluded from the operation of the protection scheme.

- Voltage Check Function (Option)

GRB200 can enhance security against false tripping due to a failure in a CT or CT secondary circuits by the provision of a voltage check element in the form of a check relay with circuits that are independent from other circuits:

The voltage check function incorporates the following elements.

- Undervoltage element for earth fault detection
- Undervoltage element for phase fault detection
- Zero-phase overvoltage element for earth fault detection

- Backup Overcurrent and Earth Fault Protection (Option)

Backup overcurrent and earth fault protection are provided in each bay. Each provides two stage overcurrent and earth fault protection respectively, and can be set to either a definite time or an inverse time characteristic.

The inverse time overcurrent elements are available in conformity with the IEC 60255-151 standard which encompasses both the IEC and IEEE/ANSI standard characteristics. Alternatively, a user-configurable curve may be created.

The definite time overcurrent protection is enabled by the instantaneous overcurrent element and pickup-delay timer.

HMI FUNCTION

- Front Panel

GRB200 provides the following front panel options.

- Standard LCD
- Large LCD

The standard LCD panel incorporates the user interfaces listed below. Setting the relay and viewing stored data are possible using the Liquid Crystal Display (LCD) and operation keys.

- 21 character, 8 line LCD with back light
- Support of English language

Figure 6 HMI Panel (large LCD type)

- The large LCD panel incorporates the user interfaces listed below:40 character, 40 line LCD with back light
- Support of multi language (option)
(20 character and 26 line LCD for multi-language)
The local human machine interface includes an LCD which can display the single line diagram for the bay (option).

The local human machine interface is simple and easy to understand with the following facilities and indications.

- Status indication LEDs (IN SERVICE, ERROR and 24 configurable LEDs)
- 7 Function keys for control, monitoring, setting group change and screen jump functions of which operation is configurable by the user
- Test terminals which can monitor three different signals from the front panel without connection to the rear terminals.
- USB port

- Local PC connection

The user can communicate with GRB200 from a local PC via the USB port on the front panel. Using GR-200 series engineering tool software (called GR-TIEMS), the user can view, change settings and monitor real-time measurements.

MONITORING

- Metering

The following power system data is measured continuously and can be displayed on the LCD on the relay fascia, and on a local or remotely connected PC.

- Measured analog currents, voltages (option) and frequency.

The accuracy of analog measurement is $\pm 0.5 \%$ for I, V at rated input and $\pm 0.03 \mathrm{~Hz}$ for frequency measurement.

Status Monitoring

The open or closed status of each switchgear device and failure information concerning power apparatus and control equipment are monitored by GRB200.

Both normally open and normally closed contacts are used to monitor the switchgear status. If an unusual status is detected, a switchgear abnormality alarm is generated.

■ Event Record

Continuous event-logging is useful for monitoring of the system from an overview perspective and is a complement to specific disturbance recorder functions. Up to 1,024 time-tagged events are stored with 1 ms resolution.

- Fault records

Information about the pre-fault and fault values for currents and voltages are recorded and displayed for trip event confirmation. The most recent 8 time-tagged faults with 1 ms resolution are stored. Fault record items are as follows.

- Date and time
- Faulted phase
- Phases tripped
- Tripping mode
- Pre-fault and post-fault current and voltage data (phase, symmetrical components)

Disturbance records

The Disturbance Recorder function supplies fast, complete and reliable information for disturbances in the power system. It facilitates understanding of system behavior and performance of related primary and secondary equipment during and after a disturbance.

The Disturbance Recorder acquires sampled data from all selected analogue inputs and binary signals. The data can be stored in COMTRADE format.

COMMUNICATION

- Station bus

Ethernet port(s) for the substation communication standards IEC 61850, DNP3.0 and Modbus® RTU are provided for the station bus.

Serial ports for communicating with legacy equipment or protection relays over IEC 60870-5-103, or Modbus® RTU are provided. GRB200 can function as a protocol converter to connect to a Substation Automation System.

- Serial communication

GENERAL FUNCTION

- Self supervision

Automatic self-supervision of internal circuits and software is provided. In the event of a failure being detected, the ALARM LED on the front panel is illuminated, the 'UNIT FAILURE' binary output operates, and the date and time of the failure is recorded in the event record.

- Time synchronization

Current time can be provided with time synchronization via the station bus by SNTP (Simple Network Time Protocol) with the IEC 61850 protocol.

- Setting groups

8 settings groups are provided, allowing the user to set one group for normal conditions, while the other
groups may be set to cover alternative operating conditions.

Password protection

Password protection is available for the execution of setting changes, clearing records and switching between local/remote controls.

Simulation and test

GRB200 provides simulation and test functions to check control functions without modification to wiring provided by a dummy circuit breaker (virtual equipment), and the capability to test communication signals by forced signal status change.

The simulation and test functions can work in the Test mode only

TOOLS \& ACCESSORY

The PC interface GR-TIEMS allows users to access GRB200 and other Toshiba GR-200 series IEDs from a local personal computer (PC) to view on-line or stored data, to change settings, to edit the LCD screen, to configure sequential logics and for other purposes.

Remote Setting And Monitoring

The engineering tool supports functions to change settings and to view and analyze fault and disturbance records stored in GRB200. Waveform data in the disturbance records can be displayed, edited, measured and analyzed in detail. The advanced version of the engineering tool can provide additional and powerful analysis tools and setting calculation support functions.

Figure 7 PC Display of GR-TIEMS

LCD Configuration

The user can configure and customize the MIMIC data displayed on the LCD of GRB200 using GR-TIEMS software.

Figure 8 PC Display of MIMIC configuration

Programmable Logic Editor

The programmable logic capability allows the user to configure flexible logic for customized application and operation. Configurable binary inputs, binary outputs and LEDs are also programmed by the programmable logic editor. This complies with IEC61131-3 standard.

Figure 9 PC display of PLC editor

HARDWARE	
Analog Inputs	
Rated current In Rated voltage Vn Rated Frequency Overload Rating Current inputs Voltage inputs	1A / 5A (selectable by user) 100 V to 120 V $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ (selectable by user) 4 times rated current continuous 5 times rated current for 3 mins 6 times rated current for 2 mins 30 times rated current for 10 sec 100 times rated current for 1 second 250 times rated current for one power cycle (20 or 16.6 ms) 2 times rated voltage continuous 2.5 times rated voltage for 1 second
Burden Phase current inputs Earth current inputs Sensitive earth fault inputs Voltage inputs	$\begin{array}{ll} \leq 0.1 \mathrm{VA} \text { at } \ln =1 \mathrm{~A}, & \leq 0.2 \mathrm{VA} \text { at } \ln =5^{\circ} \\ \leq 0.3 \mathrm{VA} \text { at } \ln =1 \mathrm{~A}, & \leq 0.4 \mathrm{VA} \text { at } \ln =5 \mathrm{~A} \\ \leq 0.3 \mathrm{VA} \text { at } \ln =1 \mathrm{~A}, & \leq 0.4 \mathrm{VA} \text { at } \ln =5 \mathrm{~A} \\ \leq 0.1 \mathrm{VA} \text { at } \mathrm{Vn} & \\ \hline \end{array}$
Power Supply	
Rated auxiliary voltage Superimposed AC ripple on DC supply Supply interruption Restart time Power consumption	$24 / 48 / 60 \mathrm{Vdc}$ (Operative range: $19.2-72 \mathrm{Vdc}$), $48 / 110 \mathrm{Vdc}$ (Operative range: $38.4-132 \mathrm{Vdc}$), $110 / 250 \mathrm{Vdc}$ or $100 / 220 \mathrm{Vac}$ (Operative range: $88-300 \mathrm{Vdc}$ or $80-230 \mathrm{Vac}$) $\leq 15 \%$ $\leq 20 \mathrm{~ms}$ at 110 Vdc $<5 \mathrm{~ms}$ $\leq 15 \mathrm{~W}$ (quiescent) $\leq 25 \mathrm{~W}$ (maximum)
Binary Inputs	
Input circuit DC voltage Capacitive discharge immunity Maximum permitted voltage Power consumption	24/48/60Vdc (Operating range: $19.2-72 \mathrm{Vdc}$), $48 / 110 \mathrm{Vdc}$ (Operating range: $38.4-132 \mathrm{Vdc}$), $110 / 125 / 220 / 250 \mathrm{Vdc}$ (Operating range: $88-300 \mathrm{Vdc}$) Note: Variable threshold settings are available for BI2 from 14 V to 154 V in various steps. $10 \mu \mathrm{~F}$ charged to maximum supply voltage and discharged into the input terminals, according to ENA TS 48-4 with an external resistor 72 Vdc for $24 / 48 / 60 \mathrm{Vdc}$ rating, 300 Vdc for $110 / 250 \mathrm{Vdc}$ rating $\leq 0.5 \mathrm{~W}$ per input at 220 Vdc
Binary Outputs	
Fast operating contacts Make and carry Break Operating time	5A continuously 30A, 290Vdc for 0.2 s (L/R=5ms) $0.15 \mathrm{~A}, 290 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ 2 ms
Semi-fast operating contacts Make and carry Break Operating time	8A continuously $10 \mathrm{~A}, 110 \mathrm{Vdc}$ for 0.5 s ($\mathrm{L} / \mathrm{R}=5 \mathrm{~ms}$) $0.13 \mathrm{~A}, 110 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ 4 ms

Auxiliary contacts	
Make and carry	8A continuously
	10A, 110Vdc for 0.5 s (L/R=5ms)
Break	$0.13 \mathrm{~A}, 110 \mathrm{Vdc}$ (L/R=40ms)
Operating time	9 ms
Hybrid contacts (10 A breaking)	
Make and carry	8A continuously
	10A, 220Vdc for 0.5 s (L/R=5ms)
Break	$10 \mathrm{~A}, 220 \mathrm{Vdc}$ (L/R=20ms)
	$10 \mathrm{~A}, 110 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$)
Operating time	1 ms
Durability	$\geq 10,000$ operations (loaded contact)
	$\geq 100,000$ operations (unloaded contact)
Measuring input capability	
Full scale	
Standard current input	$\geq 60 \mathrm{~A}$ (1A rating) or 300A (5A rating)
Voltage input	$\geq 200 \mathrm{~V}$
Sampling rate	48 samples / cycle
Frequency response	$<5 \%$ deviation over range 16.7 Hz to 600 Hz
Mechanical Design	
Installation Weight Case color	Flush mounting
	Approx. 10kg (1/3 size), 12kg (1/2 size), 25kg (1/1 size)
	2.5Y7.5/1 (approximation to Munsell value)
LED	
Number Color	26 (Fixed for "In service" and "ERROR")
	Red / Yellow / Green (configurable) except "In service" (green) and "Error" (red)
Function keys	
Number	7
Local Interface	
USB Maximum cable length	Type B
	2m (max.)
System Interface (rear port)	
100BASE-TX Physical medium 100BASE-FX Physical medium Protocol	Fast Ethernet
	Twisted pair cable, RJ-45 connector
	Fast Ethernet
	50/125 or 62.5/125 $\mu \mathrm{m}$ fibre, SC connector
	IEC61850 or Modbus® RTU
CU to BU communication	
Type: Connector: Cable:	GI optical fibre
	ST connector
	Graded-index multi-mode $50 / 125 \mu$ s or $62.5 / 125 \mu \mathrm{~s}$
Serial communication (rear port)	
RS485	Protocol
	IEC 60870-5-103 or Modbus® RTU
Fiber optical	Protocol
	IEC 60870-5-103
Terminal Block	
CT/VT input	M3.5 Ring terminal
Binary input, Binary output	M3.5 terminal with 15 mm stripping length (for compression type terminal) M3.5 Ring terminal (for ring lug type terminal)

FUNCTIONAL DATA

Current Differential Protection (87B)	
Minimum operating current (DIFCH, DIFZ): \% slope (SLPCH, SLPZ): Primary rating of CT:	500 to 3000A in 1A steps (CT primary amps) 0.30 to 0.90 in 0.1 steps 100 to 10000A in 1A steps
Circuit Breaker Failure Protection (50BF)	
Overcurrent element (OCB): BF timer for retrip of failed breaker: BF timer for related breaker trip: Operating time of overcurrent element Resetting time of overcurrent element Accuracy of overcurrent element: DO/PU ratio:	0.1 to 2.0 times of current rating in 0.1 steps 0 to 500 ms in 1 ms steps 50 to 500 ms in 1 ms steps less than 20 ms at 50 Hz or less than 17 ms at 60 Hz less than 15 ms at 50 Hz or less than 13 ms at 60 Hz $\pm 5 \%(\pm 10 \% \text { at } \mathrm{I}<0.5 \times \ln)$ 0.8
Voltage Check Function	
Undervoltage element (UVGF): Undervoltage element (UVSF): Zero-phase overvoltage element (OVGF): Undervoltage change detection element (UVDF)	20 to 60 V in 1 V steps 60 to 100 V in 1 V steps 0.1 to 10.0 V in 0.1 V steps 0.07 times voltage before fault
Phase Overcurrent Protection (50,51)	
Definite time overcurrent element Pick up level (OC) Delay time (TOC) Operating time Inverse time overcurrent element Pick up level (OCI) Time multiplier (TOCI) Characteristic Reset type Reset Definite delay Reset Time Multiplier Setting RTMS	```0.02 to 50.00 pu in 0.01 pu steps 0.00 to 10.00 s in 0.01 s steps typical 30 ms (without delay time) 0.02 to 5.00 pu in 0.01 pu steps 0.010 to 50.00 in 0.01 steps IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-EI / US-CO2 / US-CO8 / Original Definite Time or Dependent Time 0.0 to 300.0 s in 0.1 s steps 0.010 to 50.000 in 0.001 steps```
Earth Fault Protection (50N, 51N)	
Definite time overcurrent element Pick up level (EF) Delay time (TEF) Operating time Inverse time overcurrent element Pick up level (EFI) Time multiplier (TEFI) Characteristic Reset type Reset Definite delay Reset Time Multiplier Setting RTMS	0.02 to 50.00 pu in 0.01 pu steps 0.00 to 10.00 s in 0.01 s steps typical 30 ms (without delay time) 0.02 to 5.00 pu in 0.01 pu steps 0.010 to 50.00 in 0.01 steps IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-EI / US-CO2 / US-CO8 / Original Definite Time or Dependent Time 0.0 to 300.0 s in 0.1 s steps 0.010 to 50.000 in 0.001 steps
Metering Function	

Current	Accuracy $\pm 0.5 \%$ (at rating)
Voltage	Accuracy $\pm 0.5 \%$ (at rating)
Frequency	Accuracy $\pm 0.03 \mathrm{~Hz}$
Time Synchronisation	
Protocol	SNTP

ENVIRONMENTAL PERFORMANCE

Atmospheric Environment		
Temperature	$\begin{aligned} & \text { IEC 60068-2-1/2 } \\ & \text { IEC 60068-2-14 } \end{aligned}$	Operating range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Storage / Transit: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Cyclic temperature test as per IEC 60068-2-14
Humidity	$\begin{aligned} & \text { IEC 60068-2-30 } \\ & \text { IEC 60068-2-78 } \end{aligned}$	56 days at $40^{\circ} \mathrm{C}$ and 93% relative humidity. Cyclic temperature with humidity test as per IEC 60068-2-30
Enclosure Protection	IEC 60529	IP52 - Dust and Dripping Water Proof IP20 for rear panel
Mechanical Environment		
Vibration	IEC 60255-21-1	Response - Class 1 Endurance - Class 1
Shock and Bump	IEC 60255-21-2	Shock Response Class 1 Shock Withstand Class 1 Bump Class 1
Seismic	IEC 60255-21-3	Class 1
Electrical Environment		
Dielectric Withstand	IEC 60255-5	2 kVrms for 1 minute between all terminals and earth. 2 kVrms for 1 minute between independent circuits. 1 kVrms for 1 minute across normally open contacts.
High Voltage Impulse	IEC 60255-5 IEEE C37.90	Three positive and three negative impulses of 5 kV (peak), $1.2 / 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}$ between all terminals and between all terminals and earth.
Voltage Dips, Interruptions, Variations and Ripple on DC supply	IEC 60255-11, IEC 61000-4-29, IEC 61000-4-17 IEC 60255-26 Ed 3	1. Voltage dips: 0% residual voltage for 20 ms 40% residual voltage for 200 ms 70% residual voltage for 500 ms 2. Voltage interruptions: 0 \% residual voltage for 5 s 3. Ripple: 15% of rated d.c. value, $100 / 120 \mathrm{~Hz}$ 4. Gradual shut-down / start-up: 60 s shut-down ramp, 5 min power off, 60s start-up ramp 5. Reversal of d.c. power supply polarity: 1 min
Capacitive Discharge	ENA TS 48-4	$10 \mu \mathrm{~F}$ charged to maximum supply voltage and discharged into the input terminals with an external resistance

Electromagnetic Environment

High Frequency Disturbance / Damped Oscillatory Wave	IEC 60255-22-1 Class 3, IEC 61000-4-18 IEC 60255-26 Ed 3	1 MHz burst in common / differential modes Auxiliary supply and I/O ports: $2.5 \mathrm{kV} / 1 \mathrm{kV}$ Communications ports: $1 \mathrm{kV} / 0 \mathrm{kV}$
Electrostatic Discharge	IEC 60255-22-2 Class 4, IEC 61000-4-2 IEEE C37.90.3-2001 IEC 60255-26 Ed 3	Contact: $2,4,6,8 \mathrm{kV}$ Air: 2, 4, 8, 15kV
Radiated RF Electromagnetic Disturbance	IEC 60255-22-3, IEC 61000-4-3 Level 3 IEC 60255-26 Ed 3	Sweep test ranges: 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz . Spot tests at 80, 160, 380, 450, 900, 1850 and 2150 MHz . Field strength: $10 \mathrm{~V} / \mathrm{m}$
Radiated RF Electromagnetic Disturbance	IEEE C37.90.2-1995	Field strength $35 \mathrm{~V} / \mathrm{m}$ for frequency sweep of 25 MHz to 1 GHz .
Fast Transient Disturbance	IEC 60255-22-4 IEC 61000-4-4 IEC 60255-26 Ed 3	$5 \mathrm{kHz}, 5 / 50 \mathrm{~ns}$ disturbance Auxiliary supply and input / output ports: 4 kV Communications ports: 2 kV
Surge Immunity	IEC 60255-22-5 IEC 61000-4-5 IEC 60255-26 Ed 3	$1.2 / 50 \mu \mathrm{~ms}$ surge in common/differential modes: Auxiliary supply and input / output ports: 4, 2, $1,0.5 \mathrm{kV} / 1,0.5 \mathrm{kV}$ Communications ports: up to $1,0.5 \mathrm{kV} / 0 \mathrm{kV}$
Surge Withstand	IEEE C37.90.1-2002	$3 \mathrm{kV}, 1 \mathrm{MHz}$ damped oscillatory wave $4 \mathrm{kV}, 5 / 50 \mathrm{~ns}$ fast transient
Conducted RF Electromagnetic Disturbance	IEC 60255-22-6 IEC 61000-4-6 IEC 60255-26 Ed 3	Sweep test range: 150 kHz to 80 MHz Spot tests at 27 and 68 MHz . Voltage level: 10 V r.m.s
Power Frequency Disturbance	IEC 60255-22-7 IEC 61000-4-16 IEC 60255-26 Ed 3	$50 / 60 \mathrm{~Hz}$ disturbance for 10 s in common / differential modes Binary input ports: $300 \mathrm{~V} / 150 \mathrm{~V}$
Power Frequency Magnetic Field	IEC 61000-4-8 Class 4 IEC 60255-26 Ed 3	Field applied at $50 / 60 \mathrm{~Hz}$ with strengths of: 30A/m continuously, $300 \mathrm{~A} / \mathrm{m}$ for 1 second.
Conducted and Radiated Emissions	IEC 60255-25 EN 55022 Class A, EN 61000-6-4 IEC 60255-26 Ed 3	Conducted emissions: 0.15 to 0.50 MHz : $<79 \mathrm{~dB}$ (peak) or $<66 \mathrm{~dB}$ (mean) 0.50 to $30 \mathrm{MHz}:<73 \mathrm{~dB}$ (peak) or $<60 \mathrm{~dB}$ (mean) Radiated emissions 30 to $230 \mathrm{MHz}:<40 \mathrm{~dB}(\mathrm{uV} / \mathrm{m})$ 230 to $1000 \mathrm{MHz}:<47 \mathrm{~dB}(\mathrm{uV} / \mathrm{m})$ Measured at a distance of 10 m

Performance and Functional Standards			
Category			
General	IEC 60255-1		
Common requirements	IEC 60255-24 / IEEE C37.111 (COMTRADE) IEEE C37-239 (COMFEDE)		
Data Exchange	IEC 60255-27		
Product Safety	IEC 60255-125		
Functional	IEC 60255-127		
Synchronizing	IEC 60255-132		
Under/Over Voltage Protection	IEC 60255-149		
Under/Over Power Protection	IEC 60255-151		
Thermal Protection	IEC 60255-167		
Over/Under Current Protection	IEC 60255-179		
Directional Current Protection	IEC 60255-181		
Reclosing	IEC 60255-185		
Frequency Protection			
Teleprotection	Compliance with the European Commission Electromagnetic Compatibility Directive is demonstrated according to generic EMC standards European Commission Directives 2004/108/EC		
En 61000-6-2 and EN 61000-6-4, and product			
standard IEC 60255-26.			

[Hardware selection] CU (Central Unit)

Configurations

\mathbf{G}	\mathbf{R}	\mathbf{B}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{0}$	-			-				-	\mathbf{C}		-			-	$\mathbf{1}$		-		$\mathbf{0}$	\mathbf{O}

3 ports + GPS (Note : Selectable when Communication for Protection is 0 or 1 CH .)
3 ports + IRIG-B (Note : Selectable when Communication for Protection is 0 or 1 CH .)
1 port + connection terminal for external I/O unit (GIO200)
1 port + GPS + connection terminal for external I/O unit (GIO200)
1 port + IRIG-B + connection terminal for external I/O unit (GIO200)
2 ports + connection terminal for external I/O unit (GIO200)
2 ports + GPS + connection terminal for external I/O unit (GIO200)
(Note : Selectable when Communication for Protection is 0 or 1 CH .)
2 ports + IRIG-B + connection terminal for external I/O unit (GIO200)
(Note : Selectable when Communication for Protection is 0 or 1 CH .)
3 ports + connection terminal for external I/O unit (GIO200)
(Note : Selectable when Communication for Protection is 0 or 1 CH .) 3 ports + GPS + connection terminal for external I/O unit (GIO200)
(Note : Selectable when Communication for Protection is 0 CH .)
3 ports + IRIG-B + connection terminal for external I/O unit (GIO200)
(Note : Selectable when Communication for Protection is 0 CH .)
Selection of Serial and/or Ethernet Communication Port(s)

100Base-TX $\times 1$ port (When position $E=1-3$ and $B-D)$	3
100Base-FX $\times 1$ port (When position $E=1-3$ and $B-D$)	4
100Base-TX $\times 2$ ports (When position $E=4-6$ and $E-G$)	5
100Base-FX $\times 2$ ports (When position $E=4-6$ and $E-G$)	6
RS485 $\times 1$ port +100 Base-TX $\times 1$ port (When position $E=4-6$ and $E-G$)	A
RS485 $\times 1$ port + 100Base-TX $\times 2$ ports (When position $\mathrm{E}=7-9$ and $\mathrm{H}-\mathrm{K}$)	B
RS485 $\times 1$ port +100 Base-FX $\times 1$ port (When position $E=4-6$ and $E-G$)	C
RS 485×1 port +100 Base-FX $\times 2$ ports (When position $E=7-9$ and $H-K$)	D
Fiber optic (for serial) +100 Base-TX $\times 1$ port (When position $E=4-6$ and $E-G$)	E
Fiber optic (for serial) + 100Base-TX $\times 2$ ports (When position $\mathrm{E}=7-9$ and $\mathrm{H}-\mathrm{K}$)	F
Fiber optic (for serial) +100 Base-FX $\times 1$ port (When position $E=4-6$ and $E-G$)	G
Fiber optic (for serial) + 100Base-FX $\times 2$ ports (When position E = 7-9 and H-K)	H

Function Block (linked with software selection)

See function table of software selection

[^0]
Configurations

Bay Unit

Application of power system

| (CTx4) for $1 / 3 \times 19 "$ rack | 1 |
| :--- | :--- | :--- |
| (CTx4) for $1 / 2 \times 19^{\prime \prime}$ rack | 2 |

AC Rating

50 Hz	
60 Hz	
1A	
5A	
DC Rating	
110-250 Vdc or 100-220 Vac	1
$48-110 \mathrm{Vdc}$	2
24-48 Vdc	3

Outline

Standard LCD, $1 / 3 \times 19^{\prime \prime}$ rack for flush mounting	1
Standard LCD, $1 / 2 \times 19^{\prime \prime}$ rack for flush mounting	2
Large LCD, $1 / 3 \times 19^{\prime \prime}$ rack for flush mounting	5
Large LCD, $1 / 2 \times 19^{\prime \prime}$ rack for flush mounting	6
Standard LCD, $1 / 3 \times 19^{\prime \prime}$ rack for rack mounting	E
Standard LCD, $1 / 2 \times 19^{\prime \prime}$ rack for rack mounting	H
Large LCD, $1 / 3 \times 19^{\prime \prime}$ rack for rack mounting	J
Large LCD, $1 / 2 \times 19^{\prime \prime \prime}$ rack for rack mounting	L
Standard LCD, $1 / 3 \times 19^{\prime \prime}$ rack for vertical flush mounting	M
Standard LCD, $1 / 2 \times 19^{\prime \prime}$ rack for vertical flush mounting	Q
Large LCD, $1 / 3 \times 19^{\prime \prime}$ rack for vertical flush mounting	R
Large LCD, $1 / 2 \times 19^{\prime \prime}$ rack for vertical flush mounting	

BI/BO Module

Refer to Number of BI/BO Table

BI/BO Terminal Type

Compression plug type terminal	0
Ring lug type terminal	1

Function Block (linked with software selection)

See function table of software selection
Please contact with our sales staffs when you require user configurable models that are not indicated in the ordering sheet above.

Number of $\mathrm{BI} / \mathrm{BO}$

BI/BO $1 \times$ I/O module

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
		ᄃ Ó Ó O	ভ	\circ $\stackrel{\circ}{0}$ $\stackrel{1}{\omega}$ ~ ~		O		$\begin{aligned} & \text { O} \\ & \text { U } \end{aligned}$		
7	-	-	-	-	6	4	-	-	11	1xBIO1
12	-	-	-	-	3	2	-	-	12	1xBIO2
8	-	-	-	6	-	2	-	-	13	1xBIO3
-	6	-	-	-	-	2	6	-	14	1xBIO4
18	-	-	-	-	-	-	-	-	15	1xBI1
-	12	-	-	-	-	-	-	-	16	1xBI2
-	-	32	-	-	-	-	-	-	17	$1 \times \mathrm{BI} 3$
Other Configuration									ZZ	To be specified at ordering

BI/BO $2 \times \mathrm{I} / \mathrm{O}$ module (Set code position " 9 " to other than $1 / 3 \times 19$ " rack - " 1 ", " 5 ", " $\mathrm{E"}$ ", " H ", " L " and "Q")

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			$\begin{aligned} & \text { 〒 } \\ & \text { di } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \vdots \\ & \vdots \\ & \stackrel{\sim}{\sim} \end{aligned}$		O		$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { B }}{0} \end{aligned}$		
-	-	32	-	-	6	12	-	-	21	$1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1$
7	-	32	-	-	6	4	-	-	22	$1 \times \mathrm{Bl} 3+1 \times \mathrm{BIO} 1$
12	-	32	-	-	3	2	-	-	23	$1 \times \mathrm{Bl} 3+1 \times \mathrm{BIO} 2$
18	-	-	-	-	6	12	-	-	24	$1 \times \mathrm{Bl} 1+1 \times \mathrm{BO} 1$
25	-	-	-	-	6	4	-	-	25	$1 \times \mathrm{Bl} 1+1 \times \mathrm{BIO} 1$
30	-	-	-	-	3	2	-	-	26	$1 \times \mathrm{Bl} 1+1 \mathrm{xBIO} 2$
8	-	-	-	6	6	14	-	-	27	$1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
15	-	-	-	6	6	6	-	-	28	1xBIO1+1xBIO3
7	-	-	-	-	12	16	-	-	29	$1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 1$
16				12		4			2A	2xBIO3
Other Configuration									ZZ	To be specified at ordering

BI/BO $3 \times \mathrm{I} / \mathrm{O}$ module (Set code position " 9 " to other than $1 / 3 \times 19$ " rack - " 1 ", " 5 ", " $\mathrm{E"}$, " H ", " L " and "Q")

[Software selection]

CU (Central Unit)

[Software selection]

BU (Bay Unit)

[FUNCTION TABLE]
CU (Central Unit)

Function Block	Protection function		Ordering No. (Position "G \& T")	
			11	12
DIF	87	Phase-segregated current differential protection	\bullet	\bullet
	CTF	CT failure detection by ld		
	--	Differential current monitoring		
CBF	50BF	Circuit breaker failure protection	\bullet	\bullet
EFP	--	End fault protection	\bullet	\bullet
COMTP	--	Command trip function	-	\bullet
FS	FS	Fail-safe function (Voltage check function)		\bullet

[FUNCTION TABLE]
 BU (Bay Unit)

Function Block	Protection function		Ordering No. (Position "G \& T")			
			11	12	13	14
DIF	87	Phase-segregated current differential protection	-	-	-	-
	CTF	CT failure detection by Id				
	--	Differential current monitoring				
CBF	50BF	Circuit breaker failure protection	\bullet	\bullet	-	\bullet
EFP	--	End fault protection	\bullet	\bullet	-	\bullet
COMTP	--	Command trip function	\bullet	\bullet	\bullet	\bullet
OC	50	Non-directional definite time over-current protection		-		-
	51	Non-directional inverse time over-current protection				
EF	50N	Non-directional definite time earth fault over-current protection		\bullet		\bullet
	51N	Non-directional inverse time earth fault over-current protection				
FS	FS	Fail-safe function (Voltage check function)			-	-

(a)Top view

(b)Front view
(c)Side view

(d)Rear view

(e)Panel cut-out

Figure 10 - Dimension and Panel Cut-out - $1 / 1 \times 19^{\prime \prime}$ case size (Central Unit)

(a)Top view

(b)Front view

(d)Rear view

(e)Panel cut-out

Figure 11 - Dimension and Panel Cut-out - $1 / 3 \times 19$ '' case size (Bay unit)

Figure 12 - Dimension and Panel Cut-out - $1 / 2 \times 19$ ' case size (Bay unit)

Figure 13 - Binary input board module for Compression plug type terminal

(*2) Semi-fast BO
(*3) Hybrid BO

Figure 14 - Binary output board module for Compression plug type terminal

Figure 15 - Combined binary input and output module for Compression plug type terminal

Figure 16 - Binary input board module for Ring lug type terminal

(*2) Semi-fast BO
(*3) Hybrid BO

Figure 17 - Binary output board module for Ring lug type terminal

Figure 18 - Combined binary input and output module for Ring lug type terminal

CT/VT Module

Figure 19 - CT/VT module

CU (Central Unit) - $1 / 1$ size

Figure 20 - Typical external connection diagram (VCT: No.21B x 2, IO: BI1A, BO1A)

EXTERNAL CONNECTIONS DIAGRAM

BU (Bay Unit) - $1 / 3$ size

Figure 21 - Typical external connection diagram (VCT: No.22B, IO: BIO3A)

Figure 22 - Typical external connection diagram (VCT: No.22B, IO: BI1A, BO1A, BIO3A)

TOSHIBA

TOSHIEA CORPORATION
Social Infrastructure Systems Company
72-34, Horikawa-cho, Saiwai-Ku, Kawasaki 212-8585, Japan
Tel +81-44-331-1462 Fax +81-44-548-9540
http://www.toshiba-relays.com

The information given in this catalog is subject to change without notice.

- The information given in this catalog is as of 24 February 2014.
- The information given in this catalog is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
Toshiba does not take any responsibility for incidental damage (including loss of business profit, business interruption, loss of business information and other pecuniary damage) arising out of the use or disability to use the products.

[^0]: Please contact with our sales staffs when you require user configurable models that are not indicated in the ordering sheet above.

