TOSHIBA
 Leading Innovation >>>

GR-200 Series
 GRT 200
 Transformer Protection IED

GR-200 series -

The GR-200 Series is Toshiba's next generation of protection and control IED's, designed for transmission/distribution networks and providing a platform for distributed and renewable energy systems and railway applications. Flexible adaptation is enabled using extensive hardware and modular software combinations facilitating an application oriented solution.

Meeting your needs -

Extensive hardware and modular software combinations provide the flexibility to meet your application and engineering requirements.
Future upgrade paths and minor modifications are readily achievable on demand.

Powerful and wide application -

In addition to protection \& control, GR-200 has been designed to meet the challenges and take advantage of developments in information \& communications technology. Process bus capability and teleprotection based upon packet-based communications are just two of the features of GR-200.

APPLICATION

GRT200 transformer protection is implemented on Toshiba's next generation GR-200 series IED platform and has been designed to provide comprehensive protection and control applications for transformers in all types of network. This powerful and user-friendly IED will provide you with the flexibility to meet your application and engineering requirements in addition to offering outstanding performance, high quality and operational peace of mind.

- Current differential protection is applied for fast and selective main protection for two-winding or three-winding power transformers, auto-transformers and generatortransformer units. This protection requires no interposing CTs and provides stability against magnetizing inrush, overexcitation and CT saturation.
- Up to five current inputs for the phase segregated differential protection
- Restricted earth fault protection incorporating enhanced stability against CT saturation detects internal earth faults where the transformer star point is directly or low impedance earthed.
- Comprehensive back up protections
- Bay control and monitoring functions
- Communications
- Within a substation automation system or to a remote control centre, IEC 61850-8-1 [Station bus], Modbus® RTU protocol and IEC 60870-5-103

- Application

- Application for two-winding or three-winding power transformers, auto-transformers and generator-transformer units.
- Current differential protection is applied for fast and selective main protection. This protection requires no interposing CTs and provides stability against magnetizing inrush, overexcitation and CT saturation.
- Restricted earth fault protection detects internal earth faults where the transformer star point is directly or low impedance earthed and can be applied on high-voltage and low-voltage sides respectively.
- Time-overcurrent protection is mainly used as backup protection and can be applied on high- and low-voltage sides respectively.
- Thermal overload protection protects the transformer against thermal stress and provides two independently set levels for alarm and tripping.
GRT200 can be applied to the various kinds of transformer configuration as per the transformer configuration and applicable model:

Configuration	Analog inputs	Model
	$2 \times$ three-phase CT + 1 x one-phase VT	GRT200-1-*
	$3 \times$ three-phase CT + $3 \times$ zero-phase CT + $1 \times$ one-phase VT /	GRT200-2-*
	$3 \times$ three-phase CT + $3 \times$ zero-phase CT + $1 \times$ three-phase VT	GRT200-3-*

Configuration	Analog inputs	Model
	$4 \times$ three-phase CT + 1 x one-phase VT	GRT200-4-*
	$5 \times$ three-phase CT + $3 \times$ zero-phase CT + $2 x$ three-phase VT	GRT200-5-*

- Functionality

- Eight settings groups
- Automatic supervision
- Metering and recording functions
- Time synchronization by external clock such as IRIG-B and system network

- Communication

- System interface - RS485, Fiber optic, 100BASE-TX,-FX
- Multi protocol - DNP 3.0, Modbus® RTU, IEC 60870-5-103 and IEC 61850

- Security

- Password protection

- Flexibility

- Various models and hardware options for flexible application depending on system requirement and controlled object
- Mixed 1A / 5A phase and neutral current inputs
- Phase and neutral CT polarity settings
- Multi range DC power supply: 24 to 48 V / 48 to $110 \mathrm{~V} / 110$ to 240 V
- Multi-language options
- Configurable binary inputs and outputs
- Programmable control, trip and alarm logic with PLC tool software
- Human Machine Interface
- Graphical LCD and 24 LEDs
- 7 configurable function keys
- USB port for local PC connection
- Direct control buttons for open/close (O/I) and control authority (43R/L)
- Help key for supporting operation
- Monitoring terminals for testing

- Protection

- Current differential protection for two or three winding transformers (DIF) incorporating stability against inrush, over-excitation and CT saturation
- No interposing CTs required
- Mixed 1A/5A inputs for phase and neutral currents
- CT ratio, vector and zero-sequence compensation
- Restricted earth fault protection (REF) incorporating enhanced stability against CT saturation
- Breaker failure protection (CBF)
- Directional / non-directional overcurrent protection for phase faults (OC)
- Non-directional overcurrent protection for earth faults using neutral current (EFIn)
- Directional / nondirectional overcurrent protection for earth faults using phase currents (EF)
- Negative phase sequence overcurrent protection (OCN)
- Thermal overload protection (THM)
- Broken conductor protection (BCD)
- Inrush current detector (ICD)
- Overexcitation protection (VPH)
- Under/over voltage protection (UV/UVS/OV/OVS)
- Residual overvoltage protection (OVG)
- Under/over frequency and rate of change of frequency protection (FRQ)
- Voltage controlled overcurrent protection (OCV)
- Trip and/or Indication of external devices (MECH. TRIP)

- Contro

- Circuit breaker and isolator control
- Switchgear interlock check
- Synchronism voltage check
- Monitoring
- Status and condition monitoring of primary apparatus
- Switchgear operation monitoring
- Plausibility check
- Measurement s of I, V, P, Q, S, PF, f, Wh, varh
- VT failure detection (VTF)
- Current and voltage circuit supervision
- Trip circuit supervision (TCS)
- HMI function
- Selection of HMI: Standard LCD / large LCD / Separate large LCD
- Large LCD supports single line diagram indication and touch-type operation or multi-language option
- 24 configurable tri-state LEDs selectable red/green/yellow
- 7 Programmable function keys for user configurable operation

- Recording

- Fault record
- Event record
- Disturbance record

- Communication

- IEC 60870-5-103 / IEC 61850
- Modbus® RTU / Modbus® TCP/IP

- General functions

- Eight settings groups
- Automatic supervision
- Time synchronization by external clock using IRIG-B or system network
- Password protection for settings and selection of local / remote control
- Checking internal circuit by forcible signal
- Checking internal circuit using monitoring jacks

APPLICATIONS

PROTECTION

- Current Differential Protection (DIF)

GRT200 provides fast, selective protection for two and three winding transformers. It has three phasesegregated differential elements (DIF-Stage 1), each
with a dual-slope, percentage differential characteristic as shown in Figure 1. GRT200 also provides high-set unrestrained differential elements (DIF-Stage 2).

Figure 1: DIF-Stage1 characteristic

The small current characteristic provides sensitivity to low level faults. For higher level faults, the large current characteristic with increased bias compensates for the effects of CT saturation. Furthermore, GRT200 provides a CT saturation countermeasure function against a very large through-fault current.

GRT200 incorporates internal CT ratio and vector compensation, so that the relay requires no interposing CTs.

Mixed 1A/5A inputs for phase currents are available.

CT polarities for each three-phase CT can be set flexibly within GRT200 in accordance with external physical connections to each three-phase CT.

During periods of transformer energization, the use of a second harmonic restraint method blocks the relay operation.

When the transformer is overexcited due to a transient power system disturbance, the use of a fifth harmonic restraint method blocks the relay operation.

GRT200 also provides high-set unrestrained differential elements (DIF-Stage2) and ensures rapid clearance of heavy internal faults.

GRT200 provides differential current supervision functions for 87T elements to monitor erroneous differential current under normal conditions.

- Restricted Earth Fault Protection (REF)

Employing residual current of each winding and
neutral point current, restricted earth fault protection (REF) provides a highly sensitive differential protection for earth faults in a transformer which has a star point directly earthed or low impedance earthed.

The REF-DIF element has a dual slope, percentage characteristic as shown in Figure 2 and the independent elements can be applied for each transformer winding.

Figure 2: REF-DIF characteristic
The REF provides a directional check element REF-DEF to discriminate between internal and external faults to enhance stability against CT saturation as shown in Figure 3. The REF_DEF characteristic consists of both of the characteristics as shown in Figure 4 (a) and (b).

Figure 3: REF block diagram

Figure 4: REF-DEF characteristic

Mixed 1A/5A inputs for phase and neutral currents are available.

CT polarities for each neutral CT can be set flexibly within GRT200 in accordance with external physical connections to each neutral CT.

- Breaker Failure Protection (CBF)

When an overcurrent element remains in operation longer than a pre-determined length of time following the output of a trip signal the associated circuit breaker is judged to have failed and adjacent circuit breakers can be tripped as a back-up measure.

Two independent timers are available, one of which can be used to control the RETRIP of the original circuit breaker(s). The second timer is used to control the back-tripping of adjacent circuit breakers.

For high-speed protection, an overcurrent element with high-speed reset time is used to prevent a spurious re-trip or back-trip following a successful trip or re-trip action.

■ Overcurrent Protection (OC / EFIn / EF)

GRT200 provides up to 8 directional or non-directional overcurrent protections (OC) with inverse time and definite time for phase faults which can be applied flexibly for each transformer winding.

Inverse time overcurrent protection consists of an IDMT (inverse definite minimum time) element. IDMT is available in conformity with the IEC 60255-151 standard which encompasses both the IEC and IEEE/ANSI standard characteristics as shown in Figure 3. Alternatively, a user-configurable curve may be created.

The IDMT element has a programmable reset feature, selectable for instantaneous, definite time or dependent time operation. This feature can be used to protect against flashing/intermittent fault conditions, or to grade correctly with electromechanical overcurrent relays.

Definite time overcurrent protection is enabled by the instantaneous overcurrent element and pickup-delay timer.

Tripping by each element can be disabled by the scheme switches, and overcurrent backup protection
can be blocked by a binary input signal.
GRT200 provides up to 4 non-directional overcurrent protections (EFIn) with inverse time and definite time for earth faults which can be applied flexibly for each transformer winding, utilizing neutral current values observed.

GRT200 also provides up to 8 directional or non-directional overcurrent protections (EF) with inverse time and definite time for earth faults which can be applied flexibly for each transformer winding, utilizing residual current values calculated by phase currents observed.

Figure 5: Characteristics of inverse time delayed overcurrent element

- Negative Phase Sequence Overcurrent Protection (OCN)

Up to 4 negative phase sequence overcurrent protections (OCN) can be applied flexibly for each
transformer winding. OCN can be used in applications where certain fault conditions may not be detected by the normal phase and earth overcurrent protections, for example, in the case of a relay applied on the delta side of a delta-star transformer, to detect an earth fault on the star side.

- Thermal Overload Protection (THM)

The thermal overload feature provides protection for cables and other plant against the effects of prolonged operation under excess load conditions. A thermal replica algorithm is applied to create a model for the thermal characteristics of the protected plant. Tripping times depend not only on the level of overload current, but also on the level of prior load current, the thermal replica providing 'memory' of previous conditions.

The thermal characteristics of the system are defined by entering settings for full load current and thermal time constant. The GRT200 issues a trip in accordance with the 'cold' and 'hot' curves specified in IEC 60255-149 to prevent the protected system from exceeding its thermal capacity. The cold curve tripping times are applicable when the system is first energized, while the hot curves are relevant when the system has already been carrying some prior load for a period of time. An alarm output is also available to give early warning of high load current, set as a percentage of thermal capacity.

- Broken Conductor Detection (BCD)

GRT200 provides up to 3 broken conductor detections (BCD). Detects unbalance conditions in each transformer winding caused by an open circuited conductor. An unbalance threshold with programmable definite time delay is provided.

- Inrush Current Detector (ICD)

The inrush current detector (ICD) is used to prevent an incorrect operation of the aforementioned OC, EF, OCN and BCD against a magnetizing inrush current during transformer energization. ICD detects second harmonic inrush currents during transformer energization.

■ Overexcitation Protection (VPH)

Alarms and tripping for overexcitation, based on a measurement of the voltage/frequency ratio are
provided.
The alarm is definite time delayed whilst the characteristic may be selected as either having a definite time or an inverse time delay as shown in Figure 6.

Figure 6: VPH characteristic

■ Under/Over Voltage Protection (UV / UVS / OV / OVS

GRT200 provides up to 4 stage undervoltage protections for phase-to-ground voltages (UV) and phase-to-phase voltages (UVS) respectively which can be applied flexibly for HV and LV. The protections are provided with a blocking function to prevent tripping in the event of a dead line.

GRT200 also provides up to 4 independent overvoltage protections for both phase-to-ground voltages (OV) and phase-to-phase voltages (OVS) which can be applied flexibly for HV and LV. All stages can be set for inverse time or definite time operation.

$t=\frac{1}{\left(V / V_{S}\right)-1} x T M S$

$$
\left.t=\frac{1}{1-(V / V s}\right)^{x T M S}
$$

Figure 7: Inverse time characteristics

- Zero Phase Sequence Overvoltage Protection (OVG)

Up to 4 zero phase sequence overvoltage protections (OVG) are provided for detection of earth faults in high impedance earthed or isolated systems. OVG can be programmed with definite time delays, and one stage is also available with an inverse delay. The zero sequence voltage may be derived from the phase voltages, or directly measured. Suppression of superimposed 3rd harmonic components of the supply voltage is included.

- Under/Over Frequency and Rate of Change of Frequency Protection (FRQ)

GRT200 provides up to 6 stage frequency protections where over/under frequency protections or rate-of-change-of-frequency protections can be selected flexibly.

These protections provide independent frequency protection stages. The over/under frequency protection is programmable for either under- or over-frequency operation, and each has an associated delay timer. The rate-of-change-of-frequency protection calculates the gradient of frequency change (df/dt).

- Voltage Controlled Overcurrent Protection

 (OCV)Voltage controlled or voltage restraint inverse overcurrent protection (OCV) is equipped so that the relay can issue a trip signal in response to certain fault types on the lower voltage side when the fault current may be lower than the nominal value. The user can select either the voltage controlled OCI or the voltage restraint OCl function in addition to the normal OCl function. When voltage controlled OCl is used, only when an input voltage is lower than a setting, the OCI element functions. When voltage restraint OCl is used, the sensitivity of OCl is proportionally adjusted by the voltage input value between 20 and 100% of the voltage setting.

- Trip and/or Indication of External Devices (MECH. TRIP)

Up to 16 external signals such as overpressure devices and Buchholz relay operations can be applied through binary input circuits. Logic can be arranged for alarms, event recording and tripping.

CONTROL

- Switchgear Control (Option)

GRT200 provides functions for local control of switchgears from the HMI. Three-stepped operation (select-control-execute) is applied for the control of circuit breakers, isolator switches.

Switchgear control commands from the station level can also be performed through GRT200 within the application of a substation automation control system.

■ Interlock Check (Option)

The interlocking function blocks the operation of primary switching devices, for instance when an isolator switch is under load, in order to prevent equipment damage and/or accidental human injury.

Each switchgear control function has interlocking modules included for different switchyard arrangements, where each function handles interlocking for one bay. The interlocking function is distributed to each IED and is not dependent on any central function.

- Synchronism and voltage check (Option)

GRT200 implements voltage and synchronism check used for possible manual CB closing. The Characteristic for the voltage and synchronism check is shown in Figure 8.

Figure 8: Voltage and Synchronism Check Zone

HMI FUNCTION

- Front Panel

GRT200 provides the following front panel options.

- Standard LCD
- Large LCD (optional separate LCD type is also available)

The standard LCD panel incorporates the user interfaces listed below. Setting the relay and viewing stored data are possible using the Liquid Crystal Display (LCD) and operation keys.

- 21 characters, 8 lines LCD with back light
- Support of English language

The large LCD panel incorporates a touch type screen for control and navigation purposes.

- 40 character, 40 line LCD with back light
- Support of multi-languages
(20 characters and 26 lines LCD for multi-languages)

Figure 9: HMI Panel (large LCD type)

The local human machine interface includes an LCD which can display the single line diagram for the bay.

The local human machine interface is simple and easy to understand with the following facilities and indications.

- Status indication LEDs (IN SERVICE, ERROR and 24 configurable LEDs)
- 7 Function keys for control, monitoring, setting group change and screen jump functions of which operation is configurable by the user
- Test terminals which can monitor three different signals from the front panel without connection to the rear terminals.
- USB port

- Local PC Connection

The user can communicate with GRT200 from a local PC via the USB port on the front panel. Using GR-200 series engineering tool software (called GR-TIEMS), the user can view, change settings and monitor real-time measurements.

MONITORING

- Metering

The following power system data is measured continuously and can be displayed on the LCD on the relay fascia, and on a local or remotely connected PC.

- Measured analog voltages, currents, frequency, active- and reactive-power.
The accuracy of analog measurement is $\pm 0.5 \%$ for I, $\mathrm{V}, \mathrm{P}, \mathrm{Q}$ at rated input and $\pm 0.03 \mathrm{~Hz}$ for frequency measurement.

- Status Monitoring

The open or closed status of each switchgear device and failure information concerning power apparatus and control equipment are monitored by GRT200.
Both normally open and normally closed contacts are used to monitor the switchgear status. If an unusual status is detected, a switchgear abnormality alarm is generated.

RECORDING

- Event Record

Continuous event-logging is useful for monitoring of
the system from an overview perspective and is a complement to specific disturbance recorder
functions. Up to 1,024 time-tagged events are stored with 1 ms resolution.

- Fault Record

Information about the pre-fault and fault values for currents and voltages are recorded and displayed for trip event confirmation. The most recent 8 time-tagged faults with 1 ms resolution are stored. Fault record items are as follows.

- Date and time
- Faulted phase
- Phases tripped
- Tripping mode
- Pre-fault and post-fault current and voltage data (phase, phase to phase, symmetrical components)

- Disturbance Record

The Disturbance Recorder function supplies fast, complete and reliable information for disturbances in the power system. It facilitates understanding of system behavior and performance of related primary and secondary equipment during and after a disturbance.

The Disturbance Recorder acquires sampled data from all selected analogue inputs and binary signals. The data can be stored in COMTRADE format.

COMMUNICATION

- Station Bus

Ethernet port(s) for the substation communication standards IEC 61850 and Modbus® RTU are provided for the station bus.

- Serial Communication

Serial port for communicating with legacy equipment or protection relays over IEC 60870-5-103 or Modbus® RTU protocol are provided. GRT200 can function as a protocol converter to connect to a Substation Automation System.

GENERAL FUNCTION

- Self Supervision

Automatic self-supervision of internal circuits and software is provided. In the event of a failure being detected, the ALARM LED on the front panel is illuminated, the 'UNIT FAILURE' binary output operates, and the date and time of the failure is recorded in the event record.

- Time Synchronization

Current time can be provided with time synchronization via the station bus by SNTP (Simple Network Time Protocol) with the IEC 61850 protocol.

IRIG-B port is also available as an option.

- Setting Groups

8 settings groups are provided, allowing the user to

TOOLS \& ACCESSORY

The PC interface GR-TIEMS allows users to access GRT200 and other Toshiba GR-200 series IEDs from
a local personal computer (PC) to view on-line or stored data, to change settings, to edit the LCD
screen, to configure sequential logics and for other purposes.

- Remote Setting and Monitoring

The engineering tool supports functions to change settings and to view and analyze fault and disturbance records stored in GRT200. Waveform data in the disturbance records can be displayed, edited, measured and analyzed in detail. An advanced version of the engineering tool can provide additional and powerful analysis tools and setting calculation support functions.

Figure 10: PC Display of GR-TIEMS

LCD configuration

The user can configure and customize the MIMIC data displayed on the LCD of GRT200 using GR-TIEMS software.

Figure 11: PC Display of MIMIC configuration
■ Programmable Logic Editor
The programmable logic capability allows the user to configure flexible logic for customized application and operation. Configurable binary inputs, binary outputs and LEDs are also programmed by the programmable logic editor. This complies with IEC61131-3 standard.

Figure 12: PC display of PLC editor

Semi-fast operating contacts: Make and carry Break Operate time	8A continuously $10 \mathrm{~A}, 110 \mathrm{Vdc}$ for 0.5 s ($\mathrm{L} / \mathrm{R}=5 \mathrm{~ms}$) $0.13 \mathrm{~A}, 110 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ 4 ms
Auxiliary contacts: Make and carry Break Operate time	8A continuously $10 \mathrm{~A}, 110 \mathrm{Vdc}$ for 0.5 s (L/R=5ms) $0.13 \mathrm{~A}, 110 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ 9 ms
Heavy duty contacts (10 A breaking): Make and carry Break Operate time	8A continuously $10 \mathrm{~A}, 220 \mathrm{Vdc}$ for 0.5 s ($\mathrm{L} / \mathrm{R}=5 \mathrm{~ms}$) $10 \mathrm{~A}, 220 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=20 \mathrm{~ms})$ $10 \mathrm{~A}, 110 \mathrm{Vdc}(\mathrm{L} / \mathrm{R}=40 \mathrm{~ms})$ 1 ms
Durability	$\geq 10,000$ operations (loaded contact) $\geq 100,000$ operations (unloaded contact)
Measuring input capability	
Full scale Standard current input Sensitive current input Voltage input Sampling rate Frequency response	$\begin{aligned} & \geq 60 \mathrm{~A}(1 \mathrm{~A} \text { rating) or } 300 \mathrm{~A}(5 \mathrm{~A} \text { rating) } \\ & \geq 3 \mathrm{~A}(1 \mathrm{~A} \text { rating) or } 15 \mathrm{~A} \text { (} 5 \mathrm{~A} \text { rating) } \\ & \geq 200 \mathrm{~V} \\ & 48 \text { samples / cycle } \\ & <5 \% \text { deviation over range } 16.7 \mathrm{~Hz} \text { to } 600 \mathrm{~Hz} \end{aligned}$
Mechanical Design	
Installation Weight Case colour	Flush mounting Approx. 12kg ($1 / 2$ size), 15 kg ($3 / 4$ size), 25kg ($1 / 1$ size) 2.5Y7.5/1 (approximation to Munsell value)
LED	
Number Color	26 (Fixed for "In service" and "ERROR") Red / Yellow / Green (configurable) except "In service" (green) and "Error" (red)
Function keys	
Number	7
Local Interface	
USB Maximum cable length	Type B $2 m \text { (max.) }$
System Interface (rear port)	
100BASE-TX Physical medium 100BASE-FX Physical medium Protocol	Fast Ethernet Twisted pair cable, RJ-45 connector Fast Ethernet $50 / 125$ or $62.5 / 125 \mu \mathrm{~m}$ fibre, SC connector IEC 61850 or Modbus ${ }^{\circledR}$ RTU
Serial communication (rear port)	
RS485 Fiber optical	IEC 60870-5-103 or Modbus® RTU IEC 60870-5-103
Terminal Block	
CT/VT input Binary input, Binary output	M3.5 Ring terminal M3.5 Ring terminal

Current differential protection (87T)	
Stage 1: Biased current differential element	
Minimum operating value (DIF-S1-I1)	0.10 to 1.00pu in 0.01pu steps
Small current region slope (DIF-S1-Slope1)	10 to 100% in 1% steps
Large current region slope (DIF-S1-Slope2)	10 to 200\% in 1\% steps
Knee point (DIF-S1-I2)	1.00 to 20.00pu in 0.01 pu steps
2nd harmonic sensitivity for Inrush currents (DIF-2f)	10 to 50% in 1% steps
5th harmonic sensitivity for Overexcitation (DIF-5f)	10 to 100\% in 1\% steps
Operate time	Typical 25 ms
Stage 2: High-set unrestrained differential element	
Overcurrent (DIF-S2-I)	2.00 to 20.00pu in 0.01 pu steps
Operate time	Typical 20ms
Restricted earth fault element (87N)	
[Low-impedance scheme]	
Minimum operating value (REF-प-I1)	0.05 to 0.50 pu in 0.01 pu steps
Small current region slope (REF- \square-Slope1)	10 \%
Large current region slope (REF- \square-Slope2)	50 to 100\% in 1\% steps
Knee Point (REF-口-I2) 口: P, S, T	0.50 to 2.00pu in 0.01 pu steps
Non-directional and Directional Phase Overcurrent Protection (50P, 51P)	
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Definite time overcurrent	0.02 to 50.00 A in 0.01 A steps (1 A rating)
threshold	0.10 to 250.00A in 0.01A steps (5A rating)
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Inverse time overcurrent	0.02 to 5.00 A in 0.01 A steps (1 A rating)
threshold	0.10 to 25.00 A in 0.01 A steps (5 A rating)
Direction characteristic	Non Directional / Forward / Backward
Characteristic angle	0-180 degs in 1 deg steps
Delay type	DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-EI / US-CO2 / US-CO8 / Original
Drop-out/pick-up ratio	10 to 100% in 1% steps
DTL delay	0.00 to 300.00s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 50.000 in 0.001 steps
Reset type	Definite Time or Dependent Time
Reset definite delay	0.00 to 300.00 s in 0.01 s steps
Reset Time Multiplier Setting RTMS	0.010 to 50.000 in 0.001 steps

Non-directional and Directional Earth Fault Protection (50N, 51N, 50G, 51G, 67N)	
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Definite time earth fault threshold	0.02 to 50.00 A in 0.01 A steps (1 A rating) 0.10 to 250.00 A in 0.01 A steps (5 A rating)
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Inverse time earth fault threshold	0.02 to 5.00 A in 0.01 A steps (1 A rating) 0.10 to 25.00 A in 0.01 A steps (5A rating)
Direction characteristic	Non Directional / Forward / Backward
Characteristic angle	0 to 180° in 1° steps (310 lags for -3 V 0)
Polarising voltage (3V0)	0.5 to 100.0V in 0.1 V steps
Delay type	DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-EI / US-CO2 / US-CO8 / Original
Drop-out/pick-up ratio	10 to 100\% in 1\% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 50.000 in 0.001 steps
Reset type	Definite Time or Dependent Time
Reset definite delay	0.00 to 300.00 s in 0.01 s steps
Reset Time Multiplier Setting RTMS	0.010 to 50.000 in 0.001 steps
Negative Phase sequence overcurrent Protection (46)	
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Definite time NOC threshold	0.02 to 50.00 A in 0.01 A steps (1 A rating) 0.10 to 250.00 A in 0.01 A steps (5 A rating)
$1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ Inverse time NOC threshold	0.02 to 5.00 A in 0.01 A steps (1 A rating) 0.10 to 25.00 A in 0.01 A steps (5 A rating)
Direction characteristic	Non Directional / Forward / Backward
Characteristic angle	0 to 180° in 1° steps (310 lags for -3 V 0)
Polarising voltage	0.5 to 25.0 V in 0.1 V steps
Delay type	DT / IEC-NI / IEC-VI / IEC-EI / UK-LTI / IEEE-MI / IEEE-VI / IEEE-EI / US-CO2 / US-CO8 / Original
Drop-out/pick-up ratio	10 to 100% in 1\% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 50.000 in 0.001 steps
Reset type	Definite Time or Dependent Time
Reset definite delay	0.00 to 300.00 s in 0.01 s steps
Reset Time Multiplier Setting RTMS	0.010 to 50.000 in 0.001 steps
Thermal Overload Protection (49)	
Thermal setting (THM = k.IFLC)	$0.40-2.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) $2.0-10.0 \mathrm{~A}$ in 0.1 A steps (5A rating)
Time constant (τ)	$0.5-500.0 \mathrm{mins}$ in 0.1 min steps
Thermal alarm	OFF, 50% to 100% in 1% steps
Pre-load current setting	$0.00-1.00 \mathrm{~A}$ in 0.01 A steps (1 A rating) $0.0-5.0 \mathrm{~A}$ in 0.1 A steps (5 A rating)
Broken conductor protection (46BC)	
Broken conductor threshold DTL delay	0.10 to 1.00 in 0.01 steps 0.00 to 300.00 s in 0.01 s steps
Inrush Current Detection	
Second harmonic detection	10 to 50\% in 1\% steps
Inrush current thresholds	0.10 to 5.00 A in 0.01 A steps (1 A rating) 0.5 to 25.0 A in 0.1 A steps (5 rating)
CBF Protection (50BF)	
Overcurrent element BF timer for retry-trip of failed breaker BF timer for related breaker trip	0.1 to 2.0 A in 0.1 A steps (1 A rating) 0.5 to 10.0 A in 0.1 A steps (5 A rating) 50 to 500 ms in 1 ms steps 50 to 500 ms in 1 ms steps
Undervoltage Protection (27P, 27S)	

$1^{\text {st }}, 2^{\text {nd }}$ undervoltage threshold	5.0 to 130.0 V in 0.1 V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	100 to 120\% in 1\% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1 s steps
Undervoltage block threshold	5.0 to 20.0 V in 0.1 V steps
Undervoltage block delay	0.00 to 300.00 s in 0.01 s steps
Phase Overvoltage Protection (59P)	
$1^{\text {st }}, 2^{\text {nd }}$ overvoltage threshold	1.0 to 220.0 V in 0.1 V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	10 to 100\% in 1\% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0s in 0.1 s steps
Phase to Phase Overvoltage Protection (59S)	
$1^{\text {st }}, 2^{\text {nd }}$ overvoltage threshold	1.0 to 220.0 V in 0.1 V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	10 to 100\% in 1\% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0 s in 0.1 s steps
Zero Phase Sequence Overvoltage (59N)	
	$1.0-220.0 \mathrm{~V}$ in 0.1V steps
Delay type	DTL, IDMT, Original
Drop-out/pick-up ratio	10 to 100% in 1% steps
DTL delay	0.00 to 300.00 s in 0.01 s steps
IDMTL Time Multiplier Setting TMS	0.010 to 100.000 in 0.001 steps
Reset delay	0.0 to 300.0 s in 0.1 s steps
Overexcitation Protection (24)	
Pickup voltage	100.0 to 120.0 V in 0.1 V steps
Alarm level (A)	1.03 to 1.30pu in 0.01 pu steps
High level (H)	1.10 to 1.40 pu in 0.01 pu steps
Low level (L)	1.05 to 1.30pu in 0.01 pu steps
LT (Definite time)	1 to 600s in 1s steps
HT (Definite time)	1 to 600s in 1s steps
TVFH (Definite time)	1 to 600s in 1s steps
TVFA (Definite time)	1 to 600s in 1s steps
Start time	less than 130 ms
RT (Definite time)	60 to 3600s in 1s steps
Voltage Controlled Protection (51V)	
Voltage threshold	10.0 to 120.0 V in 0.1 V steps
Sensitivity range	20 to 100% of voltage threshold
Frequency Protection (81U/O)	
$1^{\text {st }}-6^{\text {th }}$ under/overfrequency threshold	$\begin{aligned} & \left(F_{\text {nom }}-10.00 \mathrm{~Hz}\right)-\left(F_{\text {nom }}+10.00 \mathrm{~Hz}\right) \text { in } 0.01 \mathrm{~Hz} \text { steps } \\ & F_{\text {nom }}: \text { nominal frequency } \end{aligned}$
DTL delay:	0.00-300.00s in 0.01 s steps
Frequency UV Block	$40.0-100.0 \mathrm{~V}$ in 0.1 V steps
$1^{\text {st }}-6^{\text {th }}$ rate-of-change frequency threshold	$0.1-15.0 \mathrm{~Hz} / \mathrm{s}$ in $0.1 \mathrm{~Hz} / \mathrm{s}$ steps

Synchronism check (25)	
Synchronism check angle	0° to 75° in 1° steps
UV element	10 to 150 V in 1 V steps
OV element	10 to 150 V in 1 V steps
Busbar or line dead check	0 to 150 V in 1 V steps
Busbar or line live check	0 to 150 V in 1 V steps
Synchronism check time	0.01 to 100.00 s in 0.01 s steps
Voltage check time	0.01 to 100.00 s in 0.01 s steps
Metering Function	Accuracy $\pm 0.5 \%$ (at rating)
Current	Accuracy $\pm 0.5 \%$ (at rating)
Voltage	Accuracy $\pm 0.5 \%$ (at rating)
Power (P, Q, S)	Accuracy $\pm 0.5 \%$ (at rating)
Power factor (PF)	Accuracy $\pm 1.0 \%$ (at rating)
Energy (Wh, VArh)	Accuracy $\pm 0.03 \mathrm{~Hz}$
Frequency	
Time Synchronisation	
Protocol	SNTP

ENVIRONMENTAL PERFORMANCE

Temperature	IEC 60068-2-1/2 IEC 60068-2-14	Operating range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. Storage / Transit: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Cyclic temperature test as per IEC 60068-2-14
Humidity	$\begin{aligned} & \text { IEC 60068-2-30 } \\ & \text { IEC 60068-2-78 } \end{aligned}$	56 days at $40^{\circ} \mathrm{C}$ and 93% relative humidity. Cyclic temperature with humidity test as per IEC 60068-2-30
Enclosure Protection	IEC 60529	IP52 - Dust and Dripping Water Proof IP20 for rear panel
Mechanical Environment		
Vibration	IEC 60255-21-1	$\begin{aligned} & \text { Response - Class } 1 \\ & \text { Endurance - Class } 1 \end{aligned}$
Shock and Bump	IEC 60255-21-2	Shock Response Class 1 Shock Withstand Class 1 Bump Class 1
Seismic	IEC 60255-21-3	Class 1
Electrical Environment		
Dielectric Withstand	IEC 60255-5	2 kVrms for 1 minute between all terminals and earth. 2 kVrms for 1 minute between independent circuits. 1 kVrms for 1 minute across normally open contacts.
High Voltage Impulse	IEC 60255-5 IEEE C37.90	Three positive and three negative impulses of 5 kV (peak), $1.2 / 50 \mu \mathrm{~s}, 0.5 \mathrm{~J}$ between all terminals and between all terminals and earth.
Voltage Dips, Interruptions, Variations and Ripple on DC supply	IEC 60255-11, IEC 61000-4-29, IEC 61000-4-17 IEC 60255-26 Ed 3	1. Voltage dips: 0% residual voltage for 20 ms 40% residual voltage for 200 ms 70% residual voltage for 500 ms 2. Voltage interruptions: 0% residual voltage for 5 s 3. Ripple: 15% of rated d.c. value, $100 / 120 \mathrm{~Hz}$ 4. Gradual shut-down / start-up: 60 s shut-down ramp, 5 min power off, 60s start-up ramp 5. Reversal of d.c. power supply polarity: 1 min
Capacitive Discharge	ENA TS 48-4	$10 \mu \mathrm{~F}$ charged to maximum supply voltage and discharged into the input terminals with an external resistance

Electromagnetic Environment

High Frequency Disturbance / Damped Oscillatory Wave	IEC 60255-22-1 Class 3, IEC 61000-4-18 IEC 60255-26 Ed 3	1 MHz burst in common / differential modes Auxiliary supply and I/O ports: $2.5 \mathrm{kV} / 1 \mathrm{kV}$ Communications ports: $1 \mathrm{kV} / 0 \mathrm{kV}$
Electrostatic Discharge	IEC 60255-22-2 Class 4, IEC 61000-4-2 IEEE C37.90.3-2001 IEC 60255-26 Ed 3	Contact: 2, 4, 6, 8kV Air: 2, 4, 8, 15kV
Radiated RF Electromagnetic Disturbance	IEC 60255-22-3, IEC 61000-4-3 Level 3 IEC 60255-26 Ed 3	Sweep test ranges: 80 MHz to 1 GHz and 1.4 GHz to 2.7 GHz . Spot tests at 80, 160, 380, 450, 900, 1850 and 2150 MHz . Field strength: $10 \mathrm{~V} / \mathrm{m}$
Radiated RF Electromagnetic Disturbance	IEEE C37.90.2-1995	Field strength $35 \mathrm{~V} / \mathrm{m}$ for frequency sweep of 25 MHz to 1 GHz .
Fast Transient Disturbance	IEC 60255-22-4 IEC 61000-4-4 IEC 60255-26 Ed 3	$5 \mathrm{kHz}, 5 / 50 \mathrm{~ns}$ disturbance Auxiliary supply and input / output ports: 4 kV Communications ports: 2 kV
Surge Immunity	IEC 60255-22-5 IEC 61000-4-5 IEC 60255-26 Ed 3	$1.2 / 50 \mu \mathrm{~ms}$ surge in common/differential modes: Auxiliary supply and input / output ports: 4, 2, $1,0.5 \mathrm{kV} / 1,0.5 \mathrm{kV}$ Communications ports: up to $1,0.5 \mathrm{kV} / 0 \mathrm{kV}$
Surge Withstand	IEEE C37.90.1-2002	$3 \mathrm{kV}, 1 \mathrm{MHz}$ damped oscillatory wave $4 \mathrm{kV}, 5 / 50 \mathrm{~ns}$ fast transient
Conducted RF Electromagnetic Disturbance	IEC 60255-22-6 IEC 61000-4-6 IEC 60255-26 Ed 3	Sweep test range: 150 kHz to 80 MHz Spot tests at 27 and 68 MHz . Voltage level: 10 V r.m.s
Power Frequency Disturbance	IEC 60255-22-7 IEC 61000-4-16 IEC 60255-26 Ed 3	$50 / 60 \mathrm{~Hz}$ disturbance for 10 s in common differential modes Binary input ports: $300 \mathrm{~V} / 150 \mathrm{~V}$
Power Frequency Magnetic Field	IEC 61000-4-8 Class 4 IEC 60255-26 Ed 3	Field applied at $50 / 60 \mathrm{~Hz}$ with strengths of: 30A/m continuously, $300 \mathrm{~A} / \mathrm{m}$ for 1 second.
Conducted and Radiated Emissions	IEC 60255-25 EN 55022 Class A, EN 61000-6-4 IEC 60255-26 Ed 3	Conducted emissions: 0.15 to $0.50 \mathrm{MHz}:<79 \mathrm{~dB}$ (peak) or $<66 \mathrm{~dB}$ (mean) 0.50 to $30 \mathrm{MHz}:<73 \mathrm{~dB}$ (peak) or $<60 \mathrm{~dB}$ (mean) Radiated emissions 30 to $230 \mathrm{MHz}:<40 \mathrm{~dB}(\mathrm{uV} / \mathrm{m})$ 230 to 1000 MHz : $<47 \mathrm{~dB}(\mathrm{uV} / \mathrm{m})$ Measured at a distance of 10 m

Performance and Functional Standards		
Category		Standards
General		
Common requirements		IEC 60255-1
Data Exchange		IEC 60255-24 / IEEE C37.111 (COMTRADE) IEEE C37-239 (COMFEDE)
Product Safety		IEC 60255-27
Functional		
Synchronizing		IEC 60255-125
Under/Over Voltage Protection		IEC 60255-127
Under/Over Power Protection		IEC 60255-132
Thermal Protection		IEC 60255-149
Over/Under Current Protection		IEC 60255-151
Directional Current Protection		IEC 60255-167
Reclosing		IEC 60255-179
Frequency Protection		IEC 60255-181
Teleprotection		IEC 60255-185
European Commission Directives		
$\because E$	2004/108/EC	Compliance with the European Commission Electromagnetic Compatibility Directive is demonstrated according to generic EMC standards EN 61000-6-2 and EN 61000-6-4, and product standard IEC 60255-26.
	2006/95/EC	Compliance with the European Commission Low Voltage Directive for electrical safety is demonstrated according EN 60255-27.

ORDERING INFORMATION

See page 25
(*) Please refer to page 26 / 27 and select the appropriate CT configuration when you require another rated current configuration.

Configurations

$3 \times$ three-phase CT + $3 \times$ zero-phase CT + $1 \times$ one-phase VT (Module No. 44)

Outline

Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Flush mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Flush mounting
Standard LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Flush/rack mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Flush mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Flush mounting
Large LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Flush/rack mounting
Standard LCD	$1 / 2 \times 19^{\prime \prime \prime}$ rack	Rack mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Rack mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Rack mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Rack mounting
Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Standard LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Vertical flush mounting

Rated Phase Currents (Default settings) (*)
$\begin{array}{r}\text { 1A } \\ \hline 5 \mathrm{~A}\end{array}$

Rated Neutral Currents (Default settings) (*)
1A
5A

Analog inputs

		E	F		G
0	-			-	

(*) Please refer to page 26 / 27 and select the appropriate CT configuration when you require another rated current configuration.

Configurations

Outline

Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Flush mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Flush mounting
Standard LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Flush/rack mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Flush mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Flush mounting
Large LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Flush/rack mounting
Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Rack mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Rack mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Rack mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Rack mounting
Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Standard LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Standard LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$3 / 4 \times 19^{\prime \prime}$ rack	Vertical flush mounting
Large LCD	$1 / 1 \times 19^{\prime \prime}$ rack	Vertical flush mounting

Rated Phase Currents (Default settings) (*)

1A

5A

Rated Neutral Currents (Default settings)
None
Analog inputs

$4 \times$ three-phase CT +	
$1 \times$ one-phase VT \quad (Module No. 44)	4

Outline		
Standard LCD	$1 / 2 \times 19^{\prime \prime}$ rack	Flush mounting

See page 25
(*) Please refer to page 26 / 27 and select the appropriate CT configuration when you require another rated current configuration.

CT configuration

Rated phase currents
$2 \mathbf{x}$ three-phase CT (When position "7" = 1)

1 CT group $(1 \mathrm{la}, 1 \mathrm{lb}, 1 \mathrm{lc})$	2 CT group (2la, 2lb, 2lc)	Ordering No. (Position "K")
1 A	1 A	$\mathbf{1}$
5 A	5 A	$\mathbf{2}$
1 A	5 A	\mathbf{A}
5 A	1 A	\mathbf{J}

$3 x$ three-phase CT (When position "7" = 2 or 3)

1CT group (1la, 1 lb, 1/c)	2CT group (2la, 2lb, 2lc)	3CT group (3la, 3lb, 3lc)	Ordering No. (Position "K")
1A	1A	1A	1
5A	5A	5A	2
1A	1A	5A	6
1A	5A	1A	A
1A	5A	5A	E
5A	1A	1A	J
5A	1A	5A	N
5A	5A	1A	S

4 x three-phase CT (When position "7" = 4)

1 CT group $(1 \mathrm{la}, 1 \mathrm{lb}, 1 \mathrm{lc})$	2 CT group $(2 \mathrm{la}, 2 \mathrm{lb}, 2 \mathrm{lc})$	3 CT group $(3 \mathrm{la}, 3 \mathrm{lb}, 3 \mathrm{lc})$	4 CT group $(4 \mathrm{la}, 4 \mathrm{lb}, 4 \mathrm{lc})$	Ordering No. (Position "K")
1 A	1 A	1 A	1 A	$\mathbf{1}$
5 A	5 A	5 A	5 A	$\mathbf{2}$
1 A	1 A	1 A	5 A	$\mathbf{4}$
1 A	1 A	5 A	1 A	6
1 A	1 A	5 A	5 A	$\mathbf{8}$
1 A	5 A	1 A	1 A	\mathbf{A}
1 A	5 A	1 A	5 A	\mathbf{C}
1 A	5 A	5 A	1 A	\mathbf{E}
1 A	5 A	5 A	5 A	\mathbf{G}
5 A	1 A	1 A	1 A	\mathbf{J}
5 A	1 A	1 A	5 A	\mathbf{L}
5 A	1 A	5 A	1 A	\mathbf{N}
5 A	1 A	5 A	5 A	\mathbf{Q}
5 A	5 A	1 A	1 A	\mathbf{S}
5 A	5 A	1 A	5 A	\mathbf{U}
5 A	5 A	5 A	1 A	\mathbf{W}

$5 x$ three-phase CT (When position "7" = 5)

$\begin{gathered} \text { 1CT group } \\ \text { (1la, } 1 \mathrm{lb}, 1 \mathrm{lc}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 2CT group } \\ \text { (2la, 2lb, 2lc) } \end{gathered}$	$\begin{gathered} \text { 3CT group } \\ \text { (3la, 3lb, 3lc) } \end{gathered}$	$\begin{gathered} \text { 4CT group } \\ (4 \mathrm{la}, 4 \mathrm{lb}, 4 \mathrm{lc}) \end{gathered}$	$\begin{gathered} \text { 5CT group } \\ \text { (5la, 51b, 5lc) } \end{gathered}$	Ordering No. (Position "K")
1A	1A	1A	1A	1A	1
5A	5A	5A	5A	5A	2
1A	1A	1A	1A	5A	3
1A	1A	1A	5A	1A	4
1A	1A	1A	5A	5A	5
1A	1A	5A	1A	1A	6
1A	1A	5A	1A	5A	7
1A	1A	5A	5A	1A	8
1A	1A	5A	5A	5A	9
1A	5A	1A	1A	1A	A
1A	5A	1A	1A	5A	B
1A	5A	1A	5A	1A	C
1A	5A	1A	5A	5A	D
1A	5A	5A	1A	1A	E
1A	5A	5A	1A	5A	F
1A	5A	5A	5A	1A	G
1A	5A	5A	5A	5A	H
5A	1A	1A	1A	1A	J
5A	1A	1A	1A	5A	K
5A	1A	1A	5A	1A	L
5A	1A	1A	5A	5A	M
5A	1A	5A	1A	1A	N
5A	1A	5A	1A	5A	P
5A	1A	5A	5A	1A	Q
5A	1A	5A	5A	5A	R
5A	5A	1A	1A	1A	S
5A	5A	1A	1A	5A	T
5A	5A	1A	5A	1A	U
5A	5A	1A	5A	5A	V
5A	5A	5A	1A	1A	W
5A	5A	5A	1A	5A	X
5A	5A	5A	5A	1A	Y

Rated neutral currents

(When position "7" 2 or 3 or 5)		Ordering No. (Position " L ")	
1 NCT	2 NCT	3NCT	
1 A	1 A	1 A	$\mathbf{1}$
5 A	5 A	5 A	$\mathbf{2}$
1 A	1 A	5 A	$\mathbf{6}$
1 A	5 A	1 A	\mathbf{A}
1 A	5 A	5 A	\mathbf{E}
5 A	1 A	1 A	\mathbf{J}
5 A	1 A	5 A	\mathbf{N}
5 A	5 A	1 A	\mathbf{S}

Number of $\mathrm{Bl} / \mathrm{BO}$

$1 \times \mathrm{I} / \mathrm{O}$ module

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			$\begin{aligned} & \bar{i} \\ & \dot{0} \end{aligned}$	$\begin{gathered} \text { O } \\ 0 \\ \vdots \\ \tilde{\sim} \\ \hline \end{gathered}$		O		$\begin{aligned} & \text { O} \\ & \text { j} \\ & \hline 0 \end{aligned}$		
7	-	-	-	-	6	4	-	-	11	1xBIO1
12	-	-	-	-	3	2	-	-	12	1xBIO2
8	-	-	-	6	-	2	-	-	13	1xBIO3
-	6	-	-	-	-	2	6	-	14	1xBIO4
Other Configuration									ZZ	To be specified at ordering

$2 \times \mathrm{I} / \mathrm{O}$ module

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			テ			O		$\begin{aligned} & \mathrm{O} \\ & \text { j̀ } \\ & \hline 0 \end{aligned}$		
-	-	32	-	-	6	12	-	-	21	1xBI3+1xBO1
7	-	32	-	-	6	4	-	-	22	$1 \times \mathrm{Bl} 3+1 \times \mathrm{BIO} 1$
12	-	32	-	-	3	2	-	-	23	$1 \times \mathrm{Bl} 3+1 \times \mathrm{BIO} 2$
18	-	-	-	-	6	12	-	-	24	1xBI1+1xBO1
25	-	-	-	-	6	4	-	-	25	$1 \times \mathrm{Bl} 1+1 \times \mathrm{BIO} 1$
30	-	-	-	-	3	2	-	-	26	$1 \times \mathrm{Bl} 1+1 \times \mathrm{BIO} 2$
8	-	-	-	6	6	14	-	-	27	$1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
15	-	-	-	6	6	6	-	-	28	$1 \times \mathrm{BIO} 1+1 \times \mathrm{BIO} 3$
7	-	-	-	-	12	16	-	-	29	$1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 1$
16				12		4			2A	2xBIO3
Other Configuration									ZZ	To be specified at ordering

$3 \times \mathrm{I} / \mathrm{O}$ module

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			$\begin{aligned} & \bar{i} \\ & 0 \end{aligned}$			O		$\begin{aligned} & \mathrm{O} \\ & \text { ì } \\ & \hline 0 \end{aligned}$		
15	-	-	-	6	12	18	-	-	31	$1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 1+1 \times \mathrm{BIO} 3$
20	-	-	-	6	9	16	-	-	32	1xBO1+1xBIO2+1xBIO3
23	-	-	-	12	6	8	-	-	33	$1 \times \mathrm{BIO} 1+2 \times \mathrm{BIO} 3$
26	-	-	-	6	6	14	-	-	34	$1 \times \mathrm{BI} 1+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
8	-	32	-	6	6	14	-	-	35	$1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
24	-	-	-	18	-	6	-	-	36	$3 \times \mathrm{BIO} 3$
25	-	-	-	-	12	16	-	-	37	$1 \times \mathrm{BI} 1+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 1$
36	-	-	-	-	6	12	-	-	39	2xBI1+1xBO1
-	24	-	-	-	6	12	-	-	3A	2xBI2+1xBO1
18	6	-	-	-	6	14	6	-	3B	$1 \times \mathrm{BI} 1+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 4$
7	-	32	-	-	6	4	16	-	3C	$1 \times \mathrm{BI} 3+1 \times \mathrm{BIO} 1+1 \times \mathrm{BO} 2$
7	-	32	-	-	12	16	-	-	3D	$1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 1$
-	-	32	-	-	6	12	16	-	3E	$1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BO} 2$
16	-	-	-	12	6	16	-	-	3G	1xBO1+2xBIO3
-	6	32	-	-	6	14	6	-	3H	$1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 4$
26	-	-	-	6	6	14	-	-	3 J	1xBO1+1xBIO3+1xBI1
-	-	62	-	-	6	12	-	-	3K	$2 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1$
Other Configuration									ZZ	To be specified at ordering

$4 \times \mathrm{I} / \mathrm{O}$ modules

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
		$\begin{aligned} & \text { ᄃ } \\ & \text { E } \\ & \text { E } \\ & \hline \text { O } \end{aligned}$	区			O		$\begin{aligned} & \text { O } \\ & \text { í } \end{aligned}$		
26	-	-	-	6	12	26	-	-	41	$1 \times \mathrm{BI} 1+2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
32	-	-	-	24	-	8	-	-	42	4xBIO3
8	-	32	-	6	12	26	-	-	43	$1 \times \mathrm{BI} 3+2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
-	-	64	-	-	12	24	-	-	44	2xBI3+2xBO1
54	-	-	-	-	6	12	-	-	46	$3 \times \mathrm{Bl} 1+1 \times \mathrm{BO} 1$
20	-	32	-	6	9	16	-	-	47	$\begin{aligned} & 1 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 2 \\ & +1 \times \mathrm{BIO} 3 \end{aligned}$
26	-	-	-	6	12	26	-	-	48	$\begin{aligned} & 1 \times \mathrm{BO} 1+1 \times \mathrm{BI} 1+1 \times \mathrm{BO} 1 \\ & +1 \times \mathrm{BIO} 3 \end{aligned}$
20				6	15	28			49	$2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 2+1 \times \mathrm{BIO} 3$
Other Configuration									ZZ	To be specified at ordering

$5 \times 1 / O$ modules

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
		$\begin{aligned} & \text { ᄃ } \\ & \text { E } \\ & \text { E } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \bar{i} \\ & \text { U } \end{aligned}$			O		$\begin{aligned} & \text { O } \\ & \text { í } \end{aligned}$		
33	-	-	-	6	6	6	32	-	51	$\begin{aligned} & 1 \times \mathrm{BI} 1+1 \times \mathrm{BIO} 1+1 \times \mathrm{BIO} 3 \\ & +2 \times \mathrm{BO} 2 \\ & \hline \end{aligned}$
44	-	-	-	6	12	26	-	-	52	$2 \times \mathrm{BI} 1+2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
25	-	96	-	-	6	4	-	-	53	$1 \times \mathrm{BII}+3 \times \mathrm{BI} 3+1 \times \mathrm{BIO} 1$
8	-	96	-	6	6	14	-	-	54	$3 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
62	-	-	-	6	6	14	-	-	56	$3 \times \mathrm{BI} 1+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
54	6	-	-	-	6	14	6	-	57	$3 \mathrm{xBI} 1+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 4$
Other Configuration									ZZ	To be specified at ordering

$6 \times 1 / O$ modules

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			区	$\begin{aligned} & \text { O} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \ddot{\sim} \end{aligned}$		O		$\begin{aligned} & \mathrm{O} \\ & \text { í } \end{aligned}$		
51	-	-	-	6	18	30	-	-	61	$\begin{aligned} & \text { 2xBl1+2xBO1+1xBIO1 } \\ & +1 \times \mathrm{BIO} 3 \\ & \hline \end{aligned}$
8	-	96	-	6	12	26	-	-	62	$3 \times \mathrm{BI} 3+2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
-	-	128	-	-	12	24	-	-	63	$4 \times \mathrm{BI} 3+2 \times \mathrm{BO} 1$
8	-	128	-	6	6	14	-	-	64	$4 \times \mathrm{BI} 3+1 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
Other Configuration									ZZ	To be specified at order

$7 \times 1 / O$ modules

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			$\begin{aligned} & \text { ¢ } \\ & \text { di } \end{aligned}$			O-		$\begin{aligned} & \text { O} \\ & \text { j̀ } \\ & \hline 0 \end{aligned}$		
80	-	-	-	6	12	26	-	-	71	$4 \times \mathrm{BI} 1+2 \mathrm{xBO} 1+1 \times \mathrm{BIO} 3$
72	6	-	-	-	12	26	6	-	72	$4 \times \mathrm{BI} 1+2 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 4$
8	-	96	-	6	18	38	-	-	73	$3 \times \mathrm{BI} 3+3 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 3$
-	6	96	-	-	18	38	6	-	74	$3 \times \mathrm{BI} 3+3 \times \mathrm{BO} 1+1 \times \mathrm{BIO} 4$
-	60	-	-	-	6	12	16	-	78	$5 \times \mathrm{BI} 2+1 \times \mathrm{BO} 1+1 \times \mathrm{BO} 2$
-	-	160	-	-	12	24	-	-	79	$5 \times \mathrm{BI} 3+2 \times \mathrm{BO} 1$
Other Configuration									ZZ	To be specified at ordering

$8 \times \mathrm{I} / \mathrm{O}$ modules

Number of BI/BO									Ordering No. (Position "A" to "B")	Configuration
			ভ́			○		$\begin{aligned} & \text { O} \\ & \text { í } \end{aligned}$		
-	-	160	-	-	18	36	-	-	83	$5 \times \mathrm{BI} 3+3 \times \mathrm{BO} 1$
-	60	-	-	-	6	12	32	-	87	$5 \mathrm{xBl} 2+1 \times \mathrm{BO} 1+2 \times \mathrm{BO} 2$
8	-	128	-	6	18	38	-	-	88	$4 \times \mathrm{BI} 3+3 \mathrm{xBO} 1+1 \times \mathrm{BIO} 3$
Other Configuration									ZZ	To be specified at ordering

Please contact with our sales staffs when you require "other configuration (number: ZZ)" that is not indicated in the ordering sheet above.

[Software Ordering]

FUNCTION TABLE

Figure 11 - Dimension and Panel Cut-out - $1 / 3 \times 19$ '" case size

Figure 12 - Dimension and Panel Cut-out - $1 / 2 \times 19$ " case size

Figure 13 - Dimension and Panel Cut-out - $3 / 4 \times 19$ " case size

DIMENSION AND PANEL CUT-OUT (1/1 size)

Figure 14 - Dimension and Panel Cut-out - $1 / 1 \times 19$ " case size

(*2) Semi-fast BO
(*3) Hybrid BO

Figure 15 - Binary input board and binary output module

(*1) Fast BO
(*2) Semi-fast BO
(*3) Hybrid BO

Figure 16 - Combined binary input and output module

CT/VT module

Module No. 35
(CT x $6+\mathrm{VT} \times 1$)
Only for $1 / 3$ rack

Module No. 44
(CT $\times 12+$ VT $\times 1$)
For $1 / 2,3 / 4$ and $1 / 1$

Module No. 47
(VT x 3)
Only for $1 / 1$ rack

Module No. 48 (CT x $6+\mathrm{VT} \times 6$)
Only for $1 / 1$ rack

Figure 17 - CT/VT module

Typical arrangement of each module ($1 / 3$ rack size)

Typical arrangement of each module（1／2 rack size）

	［10\＃3］	［10\＃2］	［IO\＃1］		［VCT\＃1］
T4	T3	T2	T1		VC1
${ }^{\text {PWSAL }}$	\square	$\square 8$	\square	C11	Vorius
$\stackrel{3}{4}$	2－80	801（2）$\square \square$	${ }^{\text {cill }}$		टंडह้
	－	\square	－	\square	
	\square_{6}	8oser）\square	$)^{68}$		
．	$\bigcirc{ }^{\text {a4 }}$	3	$\because{ }^{\text {844 }}$	C12	S\％bict
	边	$\stackrel{1}{0}$	0^{85}		\％\％erer
	18－86	80062）\square	\％		＊：Cbact
	为迥	807（4）\square	，		．${ }^{3}$
	－808	${ }^{1.8}$	${ }^{15}$	C13	S ε_{16200}
		$\stackrel{\square}{18}$	速	\bigcirc	且：\％
	3		退	${ }_{1}{ }_{1}$	\％${ }^{2007}$
	－	－${ }^{24}$	20	C14	Eziciser
	（0as（1）\square	801290 \square	为		
	\square	$\stackrel{2}{2}$	${ }^{88}$		
	${ }^{2}$	星 \square	止		
	\square	\％	48		
	\square	\square			
		11749	${ }^{8177}$		
		808	\％		
－FG		－FGB		－FG	－FG1

Typical arrangement of each module (3/4 rack size)

Typical arrangement of each module (1/1 rack size)

- The information given in this catalog is subject to change without notice.
- The information given in this catalog is as of 10 March 2014.
- The information given in this catalog is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
Toshiba does not take any responsibility for incidental damage (including 72-34, Horikawa-cho, Saiwai-ku, Kawasaki 212-8585, Japan ${ }^{-\quad \text { Toshiba does not take any responsibility for incidental damage (including }}$ Tel +81-44-331-1462 Fax +81-44-548-9540 http://www.toshiba-relays.com and other pecuniary damage) arising out of the use or disability to use the products.

