CIM for Condition Based Maintenance (CBM)

Gowri Rajappan, Ph.D. IEC TC57/WG13

Doble Engineering Company, USA 617-926-4900 grajappan@doble.com

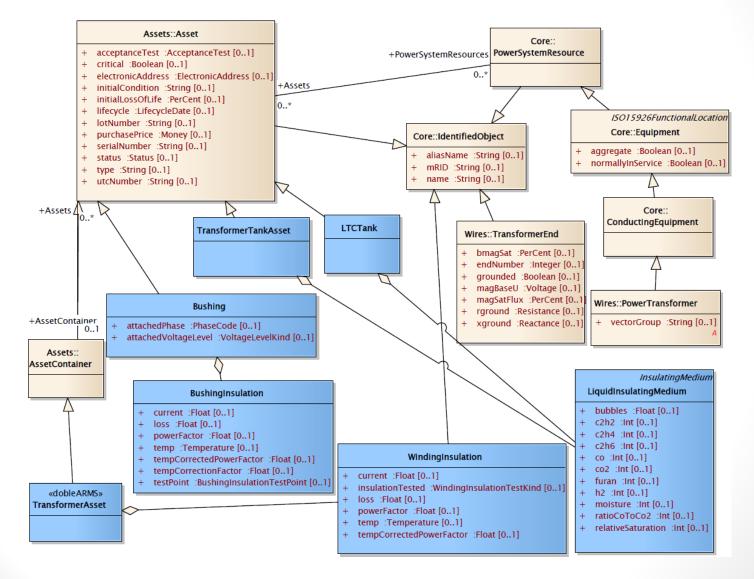
CBM Business Case

Majority of utilities still rely on time-based maintenance.

- Maintenance tasks are scheduled in advance at predetermined time intervals.
- Augmented by some CBM tools oil sampling & DGA, infrared survey, etc.
- Concerning results may trigger preventive intervention.
- Notwithstanding this, the prevailing paradigm is predominantly time-based.

Utilities need to do more.

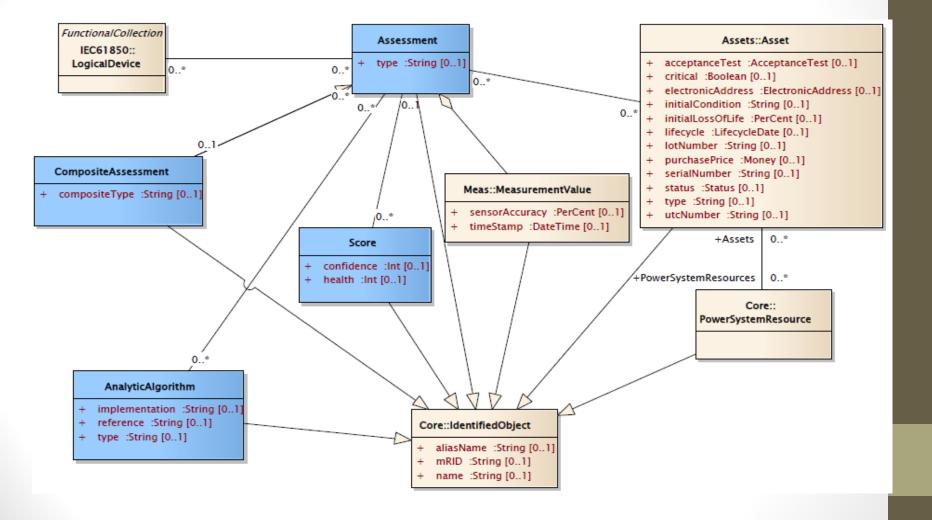
- Growing demand.
- The Smart Grid demands more information, and not just from the AMI world.
- Lower tolerance for outages.
- Higher demands from regulators.
- Fleets are getting very old.
- Media is watching more than ever.
- Operational demands require knowing the systems limits.


The New CBM / Asset Management

- A new Condition Based Maintenance (CBM) paradigm has emerged from these concerns, one that leverages modern sensing, communication, data systems, and computing technologies to:
 - Perform continuous field monitoring of equipment health indicators.
 - Integrate operational, maintenance, and health data from various sources
 - Use all the data available pertaining to asset health operational, online monitoring, lab, inspections, test...
 - Process the integrated data to assess the condition of the equipment and its components.
 - Utilize the conclusions of assessment for predictive maintenance & strategic management of assets.
- ISO 55000, in-development standard on "Asset Management" pertinent from a conceptual standpoint.

The OT Divide

- We've heard about the IT-OT divide (CIM helps).
- But there is a gulf within OT there is a ton of operations data with bearing on asset health that Asset Engineers don't have access to.
 - For instance dynamic loading data is used in IEEE C57.91 to calculate loss of life.
 - Transformer loss of life is a foundation for CBM.
 - But much of the data in operations data systems & not accessible from maintenance data systems.
- Furthermore, many objects essential to maintenance aren't well represented – e.g., insulation.
 - Insulation failure is the leading cause of transformer failure.
- Need CIM support to bridge the OT divide and enable integration of operations and maintenance data for a more comprehensive picture of asset health.


Transformers

CBM Best Practices

- Utilities want to determine CBM best practices.
 - What asset attributes should be measured?
 - What assessments should be made?
 - What actions should be taken and when?
- Utilities want to share CBM best practices.
- Need models that describe assessments and actions.
 - For instance, transformers @ Utility A run "wet" and they are worried about bubble formation risk.
 - Utility B has figured out an effective regime for tracking, assessing, and preventing bubble formation.
 - Need a standardized way of exchanging such CBM best practices.

Assessments and Algorithms

CIM for CBM

- Identification of systems that would want to exchange data.
 - Asset loading information from operations systems to asset management system.
 - Asset health information from asset management system to operations systems.
 - Test and inspection results from relevant systems.
- Better description of high value assets from asset management perspective.
 - Transformers & breakers.
 - Other assets?
- Means of describing assessments and actions.

Conclusions

- CBM must evolve.
 - Great interest from utilities across the world.
 - Well-established need for standards support.
- Affects WG13 and WG14 models.
 - Many of the concepts extend the WG14 asset models.
 - Others extend the WG13 models.
 - Use 61850-harmonized models for IEDs and measurements.
- Need collaborative work across the CIM working groups (WG13-WG14) and with the user community at large.