Industry Data Model Solution for Smart Grid Data Management Challenges

Presented by: M. Joe Zhou & Tom Eyford

UCAiug Summit 2012, New Orleans, LA

Presenters

M. Joe Zhou

VP of Strategy and Marketing

Xtensible Solutions

6312 S. Fiddler's Green Circle, Suite 210E Greenwood Village, CO 80111

Email: jzhou@xtensibl<u>e.net</u>

ORACLE®

Tom Eyford

Principal Business Strategy Consultant

1220 S 7th Circle Ridgefield, WA 98642

Email: tom.eyford@oracle.com

Topics

- Utility Data Management Challenges
- Data Management Best Practices
- Utility Data Model Solution
- Open Discussions

Big Data Value

Source: Big data: the next frontier for innovation, competition and productivity - McKinsey

Asset Management Requires Quality Information

- Effectively allocates scarce resources to provide higher levels of customer service and reliability while balancing financial objectives
- Communicates return on asset investment in terms of customer value and risk avoidance

The Real-Time and Proactive Utility

Transactional to real-time:

Leveraging information to act faster and smarter

Defining "Analytics" as a Driver of Efficiency

Analytics is the process of using quantitative methods to derive predictive insights and drive successful outcomes from data

Derived From: Competing on Analytics: The New Science of Winning (Davenport / Harris), Accenture, and Gartner

Unleashing Your Data:

Leveraging Standards, Tools and Industry Best Practices

Standardized Business Intelligence Metadata Layer

October 23, 2012

UCAiug Summit 2012, New Orleans, LA

Potential Analytics Use Cases

- Load Balancing
 - Phase based on Load
- Regulated Standards on Power Quality – Voltage Standards
- Premise Vacancy Retail Driven
 - Must disconnect after 6 months
 - People in properties and don't know why
- Appliance Reliability
 - Based on usage changes and signatures
 - \circ $\;$ Thermostat on Water Heater
 - $\circ \quad \text{Pool Pump}$
 - o Ag Pumps
 - o Sprinklers
- Predictive Churn Models
- Pricing Elasticity
- Modeling of Tariffs
 - o Optimal
 - Winners and Losers

October 23, 2012

- Predictive Maintenance
 - Load/Temperature
 - o Failure Rates
 - o SCADA
 - Pri(?) Fault
- Pole Failure Rates
- Underground Cables
 - o Faults
 - \circ Loads
- Faults
 - o Special Events
 - o Real-time Rating
- Credit Strategy
- Libraries of Signatures
- Targeted Vegetation Management
 - o Tree Profiles
 - o Momentary Outages

- Load Control
 - Control failures
- Batch Analysis
 - Fault Detection
- Lifecycle
 - 3-4 years out
 - Common Mode Failures
- Water Quality
 - O Meter Failure
- Technical and Non-Technical Losses
- Asset Risk
 - Replacement Strategies
- Correlation of Revenue to Assets

Example: Improving Short-Term Forecasting

Example: Predictive Analytics for Electric Vehicles

October 23, 2012

Example: Transformer Load Management

- Single largest T&D asset class by investment
- Uneconomical to monitor
- Recent smart grid investments (AMI, MDM, OMS/DMS) can provide detailed insight into performance

Transformers < > > **(** <75%) 75%-100% <u>\100%</u> >100% 90%-100% 80%-90% 70%-80% 60%-70% Iohnson County Library-<60% Devices Simulation Profile Load Char. B Breaker Days to Simulate Overhead Seg. 10 °C Minimum Temperature - Underground Seg. 📃 40 °C Maximum Temperature S Sectionalizer Overview Map 0 km/h Minimum Wind Speed Switch 100 Maximum Wind Speed 10 km/h Prairie Village Transformer 1 erland Pa R Recloser 100 🗪 Fuse Corinth Flementary School 1 009 Oracle Corporation ©2009 NAVTEC Indian Villa

Strategic Fleet Performance Planning

Tactical Operational Efficiency

UCAiug Summit 2012, New Orleans, LA

Smart Grid Data Management Challenges

Multiple communications technologies

- No one size fit all due to utility customer segmentation and geographical variations.
- Likely to drive up network management apps integration needs.
- Explosion of field and customer devices that will be attached to the energy delivery network.
 - Exponential growth of frequency and volume of data from field and customers devices
 - Security, reliability and liability of data and communication
- Real time processing of events with automation and visualization
 - Ability to process and react to events in real time
 - Humans will need HELP to operate the grid of the future
- Tighter integration between operational systems and enterprise systems to drive business performance (productivity and financial)
 - Grid operational decision will have much more impact on the top and bottom line of the utility business.
 Demand response to affect revenue, outage detection to affect cost, etc.
- Tighter integration with other businesses and customers third party access, customer participation, distributed energy resources, PHEV, etc.
 - Provide access to data/information to third parties (retailers, value-added service providers, etc.)
 - Provide more real time data access to customers

Data Management Best Practices

DATA MANAGEMENT

- •Biggest area of focus for CIOs, CTOs.
- •50 -80% of resources and time spent in data sourcing and Data quality
- Data layer is the most strategic component of enterprise analytics architecture.
- Reporting is only as complete, timely and accurate as the data.
- Bad data means bad decisions
- •Reference data and reporting dimensions should be used across all lines of business.

Integrated Information Architecture

Source: Oracle Information Architecture: An Architect's Guide to Big Data.

Enterprise Semantics for Utility Data Management Needs

The Industry Data Model – The Common Semantics

Why Do We Need Industry Data Model?

- Comprehensive
 - Industry Domain experience captured in one model
- Standards-based
 - Leverage the best practices of open standard models, such as CIM, MultiSpeak, etc.
- Flexible/Extensible
 - Built with the future in mind relevant (up-to-date)
 - Saves time on initial development with improved precision due to common definition
 - Prevents re-architecting the DW
 - Quicker to gain industry specific insight
- Cross Industry Expertise and Compatibility– applied to a given industry yet reuse common definitions
 - Shared concepts and structures across industry models allow for cohabitation and future expansion.
- Convergence to a large scale 'open' data model
 - Can be used for SOA, ODS or other data integration effort

Implementing Utility Data Model for Advanced Analytics

October 23, 2012

UCAiug Summit 2012, New Orleans, LA

Key Takeaways

- Data is Not Just Data
 - Data about data is key to manage data.
- Think Enterprise Act Domain Specific
 - Infrastructure, Models, Tools, Standards, Competency Centers
 - Focus on specific business and domain requirements, solve real world problems
- Advanced Analytics is not just IT.
 - Business, IT and Statisticians must come together.
 - It is about the solution, not just tools for analysis and dashboards.
 - It is about building long lasting competencies.

Thank You

 For further information and/or collaboration, please contact:

Joe Zhou – jzhou@xtensible.net

Tom Eyford – <u>tom.eyford@oracle.com</u>