

GENERALIZED STATE ESTIMATION & CIM

ONEXANT By Rashmi Nagarkar & M. Kemal Celik

State Estimation – Typical (Conventional) Approach

- Bus/branch network model
- Redundant measurements (z), and state variables (x) as bus voltage magnitudes and phase angles
- Decoupled interactions between switch statuses, analog measurements & device parameters
- No topology or parameters errors
- Small errors (noise) in sensor data following a normal distribution

State Estimation – Generalized Approach

- Node/breaker network model
- Redundant measurements (z), and flows through switches (s) and network impedances (p) in addition to conventional state variables (x)
- A single interacting set of data of switch statuses, analog measurements & device parameters
- Small errors (noise) in sensor data following normal distribution
- Potential mistakes in switch statuses and device parameters

Modeling of Switches & Uncertain Branch Parameters

Туре	Diagram	Model	Pseudo-Measurement	State
Closed Switch	m n <mark>→ ^p ma p nm </mark> → ^q ma q nm	p _{mn} = - p _{nm} q _{mn} = - q _{nm}	Zero Voltage Difference $0 = V_m - V_n$ $0 = \theta_m - \theta_n$	թ _{առ} զ _{առ}
Open Switch	m Pmn Pnm qmn qnm	p _{mn} = - p _{nm} q _{mn} = - q _{nm}	Zero Flow $0 = p_{mn}$ $0 = q_{mn}$	Pmn qmn
Series Branch	m Pmn Pmn Pmn Pmm Pmm Pmm Pmm Pm	$p_{mn} = p_{mm} + p_{mn}^{i}$ $q_{mn} = q_{mm} + q_{mn}^{i}$ $p_{nm} = p_{nn} + p_{nm}^{i}$ $q_{nm} = q_{nn} + q_{nm}^{i}$	Zero Current Difference $0 = p_{mn}^{i} \cdot V_{n} + (p_{nm}^{i} \cdot \cos \theta_{mn}) - q_{nm}^{i} \cdot \sin \theta_{mn} \cdot V_{m}$ $0 = q_{mn}^{i} \cdot V_{n} + (p_{nm}^{i} \cdot \sin \theta_{mn}) \cdot V_{m}$ $+ q_{nm}^{i} \cdot \cos \theta_{mn} \cdot V_{m}$	p'mn G'mn P'nm G'nm
Shunt Branch	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$p_{mn} = p_{mm} + p_{mn}^{i}$ $q_{mn} = q_{mm} + q_{mn}^{i}$ $p_{nm} = p_{nn} + p_{nm}^{i}$ $q_{nm} = q_{nn} + q_{nm}^{i}$	Zero Admittance Difference $0 = p_{nn} \cdot V_m^2 - p_{mm} \cdot V_n^2$ $0 = q_{nn} \cdot V_m^2 - q_{mm} \cdot V_n^2$	Р тт 9 тт 9 тт 9 тт 9 тт

* From O. Alsac, N. Vempati, B. Stott & A. Monticelli IEEE Paper

Conventional vs. Generalized State Estimation

Conventional

- Read in node/breaker data
- Run measurement plausibility
- Do network topology processing
- Run SE on bus/branch model
- Run bad data (BD) analysis
 - If none, stop
 - Delete measurements with the largest normalized residuals & run SE again

Generalized

- Read in node/breaker data
- Run measurement plausibility
- Do network topology processing
- Run SE on bus/branch model
- Run bad data (BD) analysis
 - If none, stop
 - If BD are detected, go to next SE run
- Read in node/breaker data
- Build bad data pockets
- Use a hybrid model & model bad data pockets in detail
- Zoom around BD in pockets & perform combinatorial analysis
 - Correct TE & eliminate BD

Bad Data Pockets & Zooming In

Pockets & windows do not grow in size with total number of buses, thus their solutions are system size independent

6 Nexant

Generalized SE Flow in the Presence of BD

Modular CIM Profiles*

CIM Requirements for Conventional & Generalized State Estimation

Conventional

- Read in CIM data (node/breaker data)
 - EQ
 - GEO
 - CN
- Run topology processing & produce TP
 - Use CN & TP for visualization
- Run conventional SE
 - Feedback SV
 - Show BD (if any)
 - Run SE again with same TP (if necessary)

Generalized

- Read in CIM data (node/breaker data)
 - EQ
 - GEO
 - CN
- Run topology processing & produce TP
 - Use CN & TP for visualization
 - Keep CN& TP mapping
- Run generalized SE
 - If BD detected
 - Run G-SE with pockets
 - Zoom into bad data with hybrid modeling (interacting with CN&TP mapping)

Modular CIM Profile for Generalized SE

Complications & Challenges

Network topology processing

- Needs to be consistent at different layers/functions
- Boundary profile group
 - As multiple network models used in the simulations/calculations increase, so do the complications for retaining data in both node/breaker & bus/branch formats
- Multiple sequential SE runs require mapping between node/breaker & bus/branch formats to persist accurately

Visualization

Needs both node/breaker & bus/branch to be consistently available

Conclusions

- Generalized SE is much more powerful and robust than the conventional state estimation
- It will get more focus and become a regular EMS component as network modeling accuracy requirements become more rigorous
- CIM is a powerful data interface for generalized SE
 - Meets the requirements for tailoring to both node/breaker & bus/branch models
 - Similar to the problems/challenges that have been traditionally a big problem for transmission network operators vs. planners
 - Further complications due to its ever-evolving nature and not necessarily a user friendly format
 - Still the best choice for hybrid data requirements